
POI Mining and
Generation

 Filipe Rodrigues
fmpr@student.dei.uc.pt

Coordinators:

Francisco Pereira

Ana Alves

Date: July 14th, 2010

Masters in Informatics Engineering
Dissertation
Final Report

Abstract

With the current broad use of location aware devices, the activity of geo-tagging

is becoming normal. The most atomic unit of this activity is the Point Of Interest

(or landmark) which consists of a pair of Latitude/Longitude coordinates and a tag,

normally the name of the place, a word that unambiguously identifies it and, possibly,

some extra information such as the category of the POI. We present a solution to au-

tomatically extract POIs from various sources on the Web, such as Yahoo, Manta and

Yellow Pages, aggregating them in a large database that can be used in navigation,

characterization of a place, land use analysis and geo-reference of texts. This solution is

also able to detect equivalent POIs between the multiple sources and to automatically

classify them to a widespread taxonomy like the North American Industry Classification

System (NAICS). We also propose a solution to automatically infer places of interest

based on geo-referenced content available on the Internet like geo-tagged photos, blog

posts and news feeds, thus giving a different perspective of the city and reducing the

dependency on large POI directories.

Acknowledgements

I want to thank Professor Francisco Pereira and Ana Alves for the precious guidance

and valuable knowledge they gave me during the last year. I also want to thank Shan

Jiang and Professor Joseph Ferreira from the Massachusetts Institute of Technology for

their collaboration in this and other related works. Finally, I want to thank the other

researchers at AmILab for all the support and for the great working environment they

provide.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vii

1 Introduction 1

2 State of the art 3
2.1 POI extraction . 3
2.2 Land Use and Spatial Analysis . 4
2.3 Ontology matching . 5
2.4 Machine Learning applications in Space Analysis 7
2.5 POI generation . 9

3 Approaches 12
3.1 POI extraction . 12

3.1.1 Challenges . 12
3.1.2 Software architecture . 14

3.2 POI matching . 16
3.3 POI classification . 18

3.3.1 Ontology Matching approach . 20
3.3.2 WordNet approach . 21
3.3.3 Machine Learning approaches . 21

3.3.3.1 POI Sources . 22
3.3.3.2 POI Matching and Data Preparation 22
3.3.3.3 Flat Classification . 25
3.3.3.4 Extension with Semantic Annotations 27
3.3.3.5 Hierarchical Classification 28

3.4 POI generation . 29

4 Validation 33
4.1 POI matching . 33

iii

Contents iv

4.2 POI classification . 34
4.3 POI generation . 35

5 Results 36
5.1 POI extraction . 36
5.2 POI analysis . 37
5.3 POI matching . 43
5.4 POI classification . 45
5.5 POI generation . 51

6 Conclusion 58

7 Final thoughts on the research 60

A Web Scraping techniques 62
A.1 Human copy-paste . 62
A.2 String manipulation . 63
A.3 Regular expressions . 63
A.4 DOM . 65
A.5 XPath . 65

B The database 67

C The REST Web service 68

D An application in Urban Planning 71

E North American Industry Classification System (NAICS) 76

Bibliography 79

List of Figures

3.1 Architecture of the POI Extractor . 15
3.2 User Interface of the POI Extractor . 16
3.3 Example of the NAICS hierarchy . 19
3.4 Distribution of the POIs in dataset A along the different NAICS code . . 24
3.5 Distribution of the POIs in dataset B along the different NAICS code . . 25
3.6 A possible hierarchy of classifiers . 28

5.1 Screenshot of the visualization platform 37
5.2 Screenshots of the Android visualization application 37
5.3 POIs from InfoUSA for the Boston Metropolitan Area 38
5.4 POIs from Yahoo for the Boston Metropolitan Area 39
5.5 Distribution of the POIs for the different NAICS sector 40
5.6 Comparison between five different towns according to their POI distribu-

tions along the different NAICS sectors 40
5.7 EM cluster assignments . 41
5.8 EM cluster centroids . 41
5.9 Correlation matrix of the different NAICS sectors 42
5.10 Principal Component Analysis (PCA) results 43
5.11 Accuracies for the Ontology Matching (COMA++) and WordNet ap-

proaches . 46
5.12 Screenshot 1 of places of interest identified by our POI generation approach 52
5.13 Screenshot 2 of places of interest identified by our POI generation approach 53
5.14 Screenshot 3 of places of interest identified by our POI generation approach 53
5.15 Screenshot 4 of places of interest identified by our POI generation approach 54
5.16 Screenshot 5 of places of interest identified by our POI generation approach 54
5.17 Screenshot of the generated clusters using K-means (k=100) 55
5.18 Screenshot of the generated clusters using DBScan (eps=0.001, minPts=50) 56
5.19 Screenshot of the generated clusters using DBScan (eps=0.005, minPts=50) 56

7.1 Gantt chart of planning of my research . 61

B.1 E-R model of the database . 67

D.1 Aggregated retail employment density at the Block Group level (pl/sq
km= employed people per square kilometer). 72

D.2 Cambridge retail POI distributions from Yahoo! 72
D.3 Disaggregated retail employment densities at the Block level, in Cam-

bridge, MA, by using POIs from infoUSA 74

v

List of Figures vi

D.4 Disaggregated retail employment densities at the Block level, in Cam-
bridge, MA, by using POIs from Yahoo! 74

E.1 NAICS Industry Sectors . 76
E.2 NAICS codes . 77
E.3 NAICS codes . 78

List of Tables

3.1 Some statistics of datasets A and B for Boston 23
3.2 Most common NAICS in the dataset A . 24
3.3 Most common Yahoo! categories in the dataset A 24
3.4 Brief description of each Weka algorithm tested 26
3.5 Some tags produced by Kusco. 27

5.1 Number of POIs according to the area and the POI source 38
5.2 Accuracies for the Ontology Matching (COMA++) and WordNet ap-

proaches . 45
5.3 Results obtained for the different machine learning algorithms with POIs

from dataset A for the Boston area . 47
5.4 Results obtained for the different machine learning algorithms using a

re-classified dataset . 48
5.5 Results obtained for the different machine learning algorithms using POI

data from Boston for training and POI data from New York for testing . 48
5.6 Results obtained for the different machine learning algorithms with POIs

from dataset B for the Boston area . 49
5.7 Results obtained for the different machine learning algorithms with POI

data from the Boston area using semantic annotations 49
5.8 Comparison between the results for dataset B using flat classification (4-

digit NAICS) and hierarchical classification with 2 levels (NAICS 2 and
4) . 50

5.9 Comparison between the results for dataset B using flat classification (4-
digit NAICS) and hierarchical classification with 3 levels (NAICS 2, 3 and
4) . 50

5.10 Comparison between the results for dataset B using flat classification (6-
digit NAICS) and hierarchical classification with 2 levels (NAICS 2 and
6) . 51

5.11 Comparison between the results for dataset B using flat classification (6-
digit NAICS) and hierarchical classification with 3 levels (NAICS 2, 4 and
6) . 51

vii

Chapter 1

Introduction

With the increasing number of mobile devices and social networks in the latest years, the

amount of geo-referenced information available on the Web is growing at an astonishing

rate. Capture devices such as camera-phones and GPS-enabled cameras can automati-

cally associate geographic data with images, which is significantly increasing the number

of geo-referenced photos available online. Social networks also have an important role.

They are a great medium where users can share information they collect with their

mobile devices. As a consequence, the amount of online descriptive information about

places has reached reasonable dimensions for many cities in the world.

A point of interest, or POI for short, is a specific point location that someone may

find useful or interesting. POIs can be used in navigation, characterization of a place,

sociological studies, city dynamics analysis, geo-reference of texts, etc. Such a simple

information structure can be used and enriched such that context-aware systems behave

more intelligently.

In spite of their importance, the production of POIs is scattered across a myriad of

different websites, systems and devices, thus making it extremely difficult to obtain an

exhaustive database of such a wealthy information. There are hundreds, if not thousands,

of POI directories in the Web, with POIs for places all over the World. These are in

fact great sources of information. However, each one uses its own format to represent

the POIs and its own taxonomy to classify them. Also, the Web servers that provide

POI information (e.g., Yahoo, Manta, Yellow Pages, CitySearch, Upcoming) are mere

repositories, and therefore, they do not take advantage of the full potential of such

information. In this project, we explore a number of techniques to overcome these

problems.

1

Chapter 1. Introduction 2

Our work is primarily focused on the extraction, analysis, manipulation and classi-

fication of these POIs. Besides that, we are also interested in the automatic inference

of places of interest based on geo-referenced information available on the Web, in social

networks (such as Flickr and Facebook), blogs, etc. This way, we could complement the

other POI sources or, ultimately, stop needing them at all. How good would it be, if

we did not need users and enterprise employees submitting their GPS locations to these

large POI data sources? Also, since the POIs change over time, their databases can

become obsolete unless a constant maintenance is performed.

In this document, we present a multi-threaded approach for the automatic extrac-

tion of POIs from Web sources along with an analysis of the collected data. We also

propose an algorithm for POI matching that makes use of a string comparison library

to identify similarities between POIs from different sources, and various approaches for

POI classification. The objective of the latter approaches is for us to be able to classify

POIs from different sources to a common and more widespread taxonomy like NAICS

(United States, Canada and Mexico) and ISIC (United Nations). Doing so is essential

in order to perform a proper analysis of the extracted POIs like, for instance, a land use

analysis, which is crucial for urban planning. If the POIs are not mapped to a common

taxonomy we wont be able to determine, for instance, how many POIs of restaurants

exist in a given area because a POI source may classify them as “Restaurants” and

the other as “Eating place”. Finally, we present an approach to automatically deter-

mine places of interest based on geo-referenced information from Flickr1, a huge online

community mostly dedicated to sharing photographs. This approach is mainly based

on clustering algorithms and on a proposed modified version of the common TF-IDF

weighting algorithm.

The remainder of this document is organized as follows: chapter 2 provides a sum-

mary of the state of the art; chapter 3 describes the different approaches used for the

different tasks; chapter 4 explains how we perform validation of our approaches; chapter

5 shows the different results we obtained; chapter 6 presents some final conclusions of

the developed work; and finally, chapter 7 presents some final thoughts on the research

work carried out during the last year.

1http://www.flickr.com

Chapter 2

State of the art

In this chapter we discuss the state of the art that is important to understand some of

the developed approaches and their contextualization.

2.1 POI extraction

In this section we contextualize our POI Extraction software with other existing alter-

natives.

There are no specialized tools for POI extraction that we know about. However,

there are web scraping tools that allow users to visually select parts of webpages they

want to extract, define repetition patters and other options, and extract the selected

information directly into a user-defined file or database. Some examples of such tools

are:

• Visual Web Ripper (http://www.visualwebripper.com)

• Web Content Extractor (http://www.newprosoft.com)

• Web Scraper Plus+ (http://www.velocityscape.com)

The prices of these tools range from $99 to $749, but a more professional tool can

go up to $24991. Besides the high price, this kind of tools are not very flexible, and

therefore they cannot be applied in all situations. They do not deal with problems

like hidden information in the HTML or in the JavaScript code, request limitations

imposed by the server, information spread along multiple pages, poorly formatted web
1http://www.screen-scraper.com

3

Chapter 2. State of the art 4

pages, authentication requirements, URL manipulation, etc. In summary, these tools

are appropriate to small simple scraping jobs. For larger, highly customized tasks it

is better and cheaper to develop our own scraper tool. Furthermore, the development

time is not that long if we use a framework that automatically performs the connection

handling, database management, and other required tasks.

2.2 Land Use and Spatial Analysis

This section gives some insight about land use and spatial analysis, which are very

important applications of POI data. These kind of studies allow us to understand some

key aspects of the city and the land, that are a crucial input for urban planners. However,

in order for the POI data to be properly used, it is necessary that it correctly classified in

a adequate and mature taxonomy like the NAICS, which is widely used for this kind of

studies. Without the use of a good taxonomy, POI data is pretty much chaotic and very

hard to make use of. We also present two studies that could benefit from well-classified

POI data. These studies help the reader further understand the importance and wide

range of applications of the POI data.

Land use refers to how the land is generally used, whether it is residential, commercial,

industrial, open space, etc. Land use planning can be defined as: a systematic attempt

to minimize the adverse effects land changes have on society and environments and to

maximize human benefits. Another definition states that land use planning is defined as

the process of protecting and improving the environments in a city through the proper

use and development of land. Therefore, land use planning is a process for determining

how land is used, both now and in the future [1].

At a more mundane level, interaction occurs between everyday behavior and future

land use patterns: existing land use arrangements in part determine where people live,

where they work and how and when they travel there, where they shop, where they play,

etc., while such behavior in turn helps to shape future land use patterns [2].

The most common method for land use analyses is surveys. However, performing

surveys in large areas is very expensive and takes a lot of time. Furthermore, a survey

only lets us analyze the land use in a given time. Keeping a good history of the land uses

requires frequent surveys. Thus, other methods for gathering land use information are

required, like for instance, POI-based approaches. For example, the company Ground-

Sure2 uses its own POI data to provide an up-to-date picture of land use and identify
2http://www.groundsure.com

Chapter 2. State of the art 5

current potential sources of contamination and pollution, producing reports that are

very useful to urban planners.

Spatial analysis has long been a topic of interest of researchers, who seek a compre-

hensive understanding on how the city behaves in different perspectives and its impact

in the economy. Methods for analyzing spatial (and space-time) data have already been

well developed by statisticians [3] and econometricians [4].

On the econometrics perspective, Currid et al [5] try to understand the importance

of agglomeration economies as a backbone to urban and regional growth, by identifying

clusters of several “advanced” service sectors (professional, management, media, finance,

art and culture, engineering and high technology) and comparing them in the top ten

populous metropolitan areas in the U.S. They concluded that there are three spatial

typologies of growth in the advanced services within U.S. urban regions. These typologies

allowed them to understand qualities of place in general and of places specifically that

drive the agglomeration of advanced services.

On a particular case study of the biotech industry in the U.S., Sambidi and Harrison[6]

also analyze factors affecting site-selection of industries, testing the hypothesis of spatial

agglomeration economies in that industry and confirm it using spatial econometrics.

In the same topic, Arbia[7] classifies the spatial processes of individual firms into a

birth process (new firms) and a growth process (existing firms), and proposes a model

of economic activities on a continuous space also with the purpose of studying the

geographical concentration of economic activities and analyze the economic behavior of

individual firms.

2.3 Ontology matching

In this section we talk about ontologies and ontology matching techniques which are the

basis of one of the POI Classification approaches later presented in this document.

An ontology is a formal representation of a set of concepts within a domain and the

relationships between these concepts. It is used to reason about the properties of that

domain, and may be used to define the domain.

Ontologies are commonly described in Web Ontology Language (OWL). OWL is in-

tended to be used when the information contained in documents needs to be processed

by applications, as opposed to situations where the content only needs to be presented to

humans. OWL can be used to explicitly represent the meaning of terms in vocabularies

Chapter 2. State of the art 6

and the relationships between these terms. OWL has more support for expressing mean-

ing and semantics than XML, RDF, and RDF-S, so OWL goes beyond these languages

in its ability to represent machine interpretable content on the Web[8].

As the number of ontologies that are made publicly available and accessible on the

Web increases steadily, so does the need for applications to use them. A single ontology

is no longer enough to support the tasks envisaged by a distributed environment like

the Semantic Web. Multiple ontologies need to be accessed from several applications.

Ontology mapping could provide a common layer from which several ontologies could be

accessed and hence could exchange information in semantically sound manners. Devel-

oping such mappings has been the focus of a variety of works originating from diverse

communities over a number of years [9].

Even though there is a lot of research and development in the ontology mapping area,

only a small set of tools is publicly available for general use. We went through some

research projects like X-SOM [10], COMA/COMA++ [11], MAFRA [12], PROMPT

[13] and GLUE [14], in order to select the most appropriate for our goals.

COMA++ is one of the most popular tools for Ontology Matching that are available

to the community. COMA++ uses a composite approach to combine different match

algorithms like string matchers, reuse-oriented matchers and statistics. Using a flexi-

ble infrastructure for combining and refining matcher results, the match processing is

supported as a workflow of several match steps. They implemented specific matching

strategies (i.e. workflows) for context-dependent, fragment-based, and reuse-oriented

matching, respectively:

• Context-dependent Matching: This kind of matching takes into account the path to

the node instead of just the node for matching the ontologies. Context-dependent

matching is necessary for schemas with shared elements, because the latter exhibit

multiple contexts which should be differentiated for a correct matching.

• Fragment-based Matching: To cope with large schemas, COMA++ implements

a fragment-based match processing approach. Following the divide-and-conquer

idea, it decomposes a large match problem into smaller subproblems by matching

at the level of schema fragments. With the reduced problem size, they aim not only

at better execution time but also at better match quality compared to schema-level

matching.

• Reuse-oriented Matching: With this strategy they pursue the reuse of previously

determined match results.

Chapter 2. State of the art 7

X-SOM also appeared to be a very interesting tool. However, it was not available

to the public. X-SOM has a modular and extensible architecture that automatically

combines several matching techniques by means of a neural network. It uses many

interesting matching modules such as:

• Jaro module (syntactical): finds the similarity of two terms using an algorithm

based on Jaro String Similarity.

• Levenshtein module (syntactical): computes the Levenshtein distance between two

terms and evaluates their degree of similarity

• WordNetSimilaritymodule(syntactical): uses the WordNet thesaurus, builds a path

of hypernym relations between two terms, and calculates their similarity with re-

spect to this path.

• Googleapi module (syntactical): queries the Google search engine and, based on

the number of results, computes the similarity of two terms.

Using a three-layer neural network, the framework then automatically learns, on a

domain-independent training set, how to weigh each matching algorithm in order to

maximize overall precision and recall. The framework also allows the weights of each

matching module to be set manually, by a human expert. However, this solution implies

that the operator knows in advance how reliable the various techniques are, in order to

assign appropriate weights.

For further information about these and other ontology matching tools/projects like

MAFRA, PROMPT and GLUE, the interested reader can take a look at [9].

2.4 Machine Learning applications in Space Analysis

This section describes some applications of Machine Learning algorithms mainly in the

field of Space Analysis.

The applications of machine learning algorithms in classification tasks are vast and

cover diverse areas such as Medicine, Transportation and Urban Planning. In the latter,

land-use/land-cover information has long been recognized as a very important material

[15]. However, as Fresco [16] claimed, accurate data on actual land-use cannot be easily

found at both global/continental and national/regional scales.

In order to cope with these problems, automatic approaches to classify land use are

being developed using distinct techniques.

Chapter 2. State of the art 8

A common approach to infer land-use/land-cover, is to use satellite imagery. How-

ever, while these approaches have already proven to get good results, they are more

suited to land-cover inference, which is considered somehow different from land-use by

many authors. Campbell [17], for example, considers land-cover to be concrete whereas

land-use is abstract. That is, land-cover can be mapped directly from images, while land-

use requires land-cover and additional information on how the land is used. Danoedoro

[18] tries to improve land-use classification via satellite imagery by combining spectral

classification, image segmentation and visual interpretation. Although he showed that

satellite imagery could be used for generating socio-economic function of land-use at

83.63% accuracy, he is the first to recognize that applying such techniques to highly

populated areas would be problematic.

Li et al. [19] also use data mining techniques to discover knowledge from GIS

databases and remote sensing image data that could be used for land use classification.

In the field of remote sensing, Bayes classification (or maximum likelihood classification)

is most widely used and, for most multi-spectral remote sensing data, the Bayes method

classifies the coarse classes correctly, such as water, residential area, green patches, etc.

But usually more detailed classification is required in land use classification. In order to

subdivide some of the classes, Li et al. propose the use of inductive learning techniques,

particularly the C5.0 algorithm. By using these techniques they were able to get an

overall accuracy of 89%. Comparing their final result with the result produced only by

Bayes classification, the overall accuracy increased 11%.

An alternative to satellite imagery is the POI data. Using a large commercial POI

database, Santos and Moreira [20] create and classify location contexts using decision

trees. They start by identifying clusters by means of a density-based clustering algorithm

(Shared Nearest Neighbor algorithm). Using the identified clusters they then define areas

(or regions) that represent them through the application of a concave hull algorithm

they developed. Finally, making use of the C5.0 algorithm, they classify a given location

according to such characteristics as the number of POIs in a cluster, the size of the area

of the cluster and the categories of the POIs within the cluster.

In order to use POI data for the classification of places and land-use analysis, POI

classification is an essential task. Griffin et al. [21] use decision trees to classify GPS-

derived POIs. However, they refer to POIs as “personal” locations to a given individual

(i.e. home, work, restaurant, etc.). The main goal of their approach is then to automat-

ically classify trips. In their approach, they start by determining clusters of trip-stops

(i.e. stops that took more than 5 minutes) using a density-based clustering algorithm

(Dbscan). Then, they make use of the C4.5 algorithm to classify the generated clus-

ters as being “home”, “work”, “restaurant”, etc., based on the time of the day and the

Chapter 2. State of the art 9

length of the stay. However, to our best knowledge, no previous approaches have been

made to classify POIs to a classification system like NAICS. The latter is widely used

for industry classification and has already been used, for instance, to classify Web Sites

through machine learning techniques [22].

2.5 POI generation

The availability of map interfaces and location-aware devices leads to a growing amount

of unstructured geo-referenced information available on the Web. Due to the underlying

potential of this kind of information, many researchers are trying to find a way to

make sense out of it. One potential use of this information is the identification of new

meaningful places in a fully automated way.

Ahern et al. [23] proposed a mechanism that uses unstructured text labels (i.e., tags)

from geo-referenced photos available on Flickr, a very popular photo-sharing website,

with the objective of generating aggregate knowledge in the form of representative tags

for arbitrary areas in the world. In their research they used a dataset consisting of

6 million public geo-referenced (or “geo-tagged”) photographs on Flickr. Using this

large dataset, they create clusters to represent a group of photos. In order to do that,

they use the k-Means clustering algorithm, based on the photos latitude and longitude.

The stopping condition used for the k-Means algorithm is when each clusters centroid

movement drops below 50 meters. Then, if any two cluster centroids are too close to

each other they merge the clusters.

Once the clusters have been determined, the system scores the clusters tags to see if

it is possible to extract representative tags for each cluster. One of the factors they use

for scoring is TF-IDF (term frequency × inverse document frequency) which assigns a

score to each tag in a cluster according to how specific it is to that cluster, i.e., how well

it represents that cluster. TF-IDF is often used in information retrieval and text mining.

The TF-IDF weight is a statistical measure used to evaluate how important a word is

to a document in a collection or corpus. The importance increases proportionally to the

number of times a word appears in the document but is offset by the frequency of the

word in the corpus. Therefore, their approach assigns a higher score to tags that have a

larger frequency within a cluster compared to the rest of the area under consideration.

The assumption they make is that the more unique a tag is for a specific cluster, the

more representative the tag is for that cluster. Besides TF-IDF, they also consider the

user information to help them scoring the photos. Here the assumption is that a user is

likely to assign to most of the photos he takes the same tag(s).

Chapter 2. State of the art 10

They faced some issues when analyzing the Flickr data, namely noise (e.g. photos

with tags that are not relevant to the location) and errors (e.g., photos that are geo-

tagged incorrectly).

Regarding visualization, they developed a tool, World Explorer, which helps expose

the content of the data, using a map interface to display the derived tags and the original

photo items.

In order to evaluate their results Ahern et al. [23] focused themselves on collecting

qualitative feedback regarding the visualization and the effectiveness of the extracted

tag data. In particular, they were interested in examining whether recruited participants

found the application useful and for which purpose. The results they obtained were very

promising, with some participants nostalgically remembering places they visited in the

past.

Twaroch et al. [24] suggested a way to decide whether a given particular named

entity is in fact a place, by using spatial prepositions (e.g., in, inside, within, at, near,

etc) and document counts provided by web search engines such as the Yahoo BOSS

API, in order to measure the cognitive significance of landmarks. For their research,

they used 2500 distinct location entries mined from a social web source (Gumtree3) for

the region of Cardiff, UK. The data represented location tags freely entered by people to

sell/buy items or make social contacts. They started by flittering out tags that contained

addresses or numbers using regular expressions. Then, they defined a trigger phrases

list using special proposition like in, inside, within, at, near, etc. Finally, they counted

the number of documents returned by web queries using Yahoo’s BOSS API for each

of the candidate names. In this way, they were able to evaluate their relevance, thus

measuring the cognitive significance of landmarks.

Mummidi et al. [25] use collections of user-defined pushpins in a map to discover

new POIs. On their website, they allow users to create collections of geographically

anchored pushpins which they can tag and classify without a predefined taxonomy of

categories. Their data mining solution then extracts, from each pushpin, candidate

POI phrases from its title and notes/tags, representing them as n-grams. Then it finds

geometric clusters of these pushpins using dendrograms, which manifests a hierarchical

agglomerative clustering technique. Once the clusters are determined, they examine the

pushpins n-grams and other features for likely POI names using TF-IDF along with

other parameters they consider relevant. TF-IDF is used as follows: if a given text

phrase is mentioned frequently in a cluster, but infrequently elsewhere, that increases

the confidence that the phrase name is a POI.
3http://www.gumtree.com

Chapter 2. State of the art 11

One negative aspect is that they do not deal with misspelling errors and abbrevia-

tions, which are very common in this kind of volunteered geographic information (VGI).

Their validation is based in human contribution through a survey, which is somewhat

imprecise. Regarding the results, the inquired users did not identify a good percentage

of the POIs they generated. However, most of the POIs they did recognized were deemed

correct.

Jaffe et al. [26] proposed a framework for automatically selecting a summary set

of photos from a large collection of geo-referenced photographs. They start by ap-

plying a modified version of the Hungarian clustering algorithm to their collection of

photographs. Then they score the different clusters depending on several factors like

tag-distinguishability (determined using TF-IDF), photographer-distinguishability (also

determined using TF-IDF) and density of the cluster. In order to choose a photo to

represent each cluster, their algorithm picks a photo with the tags that best match the

top tags for that cluster according to the tag-distinguishability parameter.

An initial evaluation of their implementation in a set of geo-referenced photos showed

that their algorithm and visualization perform well, producing summaries and views that

are highly rated by users.

Chapter 3

Approaches

3.1 POI extraction

Extracting POIs from Web resources is essentially a Web scraping task. There are

multiple ways to scrape a Web page, being the most commonly used: XPath, string

manipulation and regular expressions. Our approach uses regular expressions because

we found it to be the most robust and flexible. Other approaches are more error prone

and require more frequent patching and updating. The use of regular expressions also

makes the source code a lot clearer. A complete comparison between approaches can be

found on appendix A.

3.1.1 Challenges

During the implementation of the POI Extractor application we came across many

different challenges. This section describes the most relevant ones.

Since POI data is scattered across various sources in different formats, it was neces-

sary to create a relational database schema that could accommodate POIs with different

levels of information. In appendix B the reader can see the E-R model of our database.

We were also careful while defining the POI identifiers. We preferably try to use the POI

id used by the POI source, but this is not enough to guarantee uniqueness. Therefore,

we use a composite id, by concatenating the source, coordinates, and internal id (or

name alternatively) of the POI as follows:

<POI source> <latitude> <longitude> <internal id or name>

(e.g., yahoo 42.358529 -71.054036 58351151,

manta 42.359730 -71.101450 dnbcompany 7d1wjd,

yp 42.4144264 -71.1260849 Charles A Jones).

12

Chapter 3. Approaches 13

In many cases, POI websites provide a developers API, using REST or SOAP Web

services, which facilitates programmers’ work. However, most of the websites still do not

have one, besides, some of these websites have poorly formatted HTML, which makes

the scraping task extremely hard.

Two interesting examples are the cases of Yahoo and Manta. Yahoo provides an API

for their POIs. However, the API does not show the complete information it has about

each POI, so, we also have to go to the Yahoo’s page about that POI to retrieve the

missing information in the API. Furthermore, when we search the Yahoo’s API for POIs

in a given zip code, it only returns a maximum of 250 results, and considering that a zip

code covers a wide area, 250 is far from the total number of POIs that Yahoo really has

for that zip code. In order to extract a more complete set of POIs for a given zip code,

we use their taxonomy to refine the search, thus, instead of one request for a zip code,

we make more than a thousand, each one for a different category of the taxonomy. In

this way, we increase the maximum possible number of extracted POIs from 250 to more

than 250000. Because Manta doesn’t provide an API it doesn’t raise these problems;

however, its search engine is extremely difficult to use and understand. We extract POIs

from Manta by parsing the HTML of the city we were interested in, in order to get the

URLs for the Manta Web pages containing the POIs for the different categories.

Due to its nature, POI extraction applications are generally I/O bound, i.e., the

time it takes to complete a computation is determined mainly by the period of time

spent waiting for input/output operations to be completed. In order to cope with this,

we developed a multi-threaded application based on the master-worker model, using

threads to make multiple simultaneous requests to the Web server so that when some

threads are, for example, analyzing the HTML response or inserting information in the

database the others can be making new requests to the server, thus maximizing the

throughput.

Unfortunately, this leads us to our next issue: most of the Web sources have request

limits, which often present themselves in two different ways (based on the request rate or

based on a fixed request limit per day). For example, Yahoo has a limit of 5000 requests

per IP address per day and Yelp has a limit of just 100 requests. Furthermore, they have

a kind of DoS (Denial of Service attack) defense mechanism that blocks IP addresses

making lots of requests per second. The user must be aware of the legal implications

of over-requesting because many websites have restricted policies against that. In our

case, we were only interested in the POI data just for our study areas/cities, mainly

Boston and New York. Our use of this data is legal but due to project time constraints,

we needed to speed up considerably the data acquisition. We did not perform any kind

of massive attack to the POI data servers, but we did have to use a parallelized method

Chapter 3. Approaches 14

of data collection. In order to deal with that, we made use of some of the thousands

of HTTP proxies, also known as Web proxies or anonymizers, available throughout

the Internet. These proxies generally attempt to anonymize web surfing. The server

receives requests from the anonymizing proxy server, which works as an intermediary,

and thus the server we are connecting to does not receive information about the end

user’s address. Typically, proxy users are merely interested in anonymity for added

security, hiding their identities from potentially malicious websites, for instance, or on

principle, to facilitate constitutional human rights of freedom of speech. Therefore,

proxies can be very useful to our POI Extractor. The ideia is quite simple: since Web

servers have request limits per IP address and, since each of these HTTP proxies has

its own IP address, we can use them to overcome the request limitations presented

by the Web servers. Another interesting application of HTTP proxies is to overcome

country-based website restrictions. For instance, the american version of the Yellow

Pages website is not accessible to portuguese IP addresses for some reason. Therefore,

the only way to retrieve POI data from their website was to use proxies, particularly,

american proxies.

Using HTTP proxies allowed us to reduce the POI extraction time to a few weeks,

but remember that using this solution requires an up-to-date proxy list which is difficult

to get because they are constantly updating their Web address and their state (i.e.,

online or offline).

Still concerning the request limitations, our POI Extractor allows users to define a

random interval between requests to the server. Some Web servers are so sensitive to

multiple simultaneous requests that even if one makes one request every ten seconds for

a long period of time, it will be blocked. Therefore, we implemented a sleep mechanism

that forces the Extractor to wait a given period of time before it makes another request.

If the application still gets blocked, it automatically increases this interval. Of course

the proxies alternative might also address this problem, but the user’s IP address might

get blocked by the proxy instead and, since for a common user extraction time is not

crucial, interleaving the requests is recommended instead of using proxies.

Again, besides not having violated any principle of the websites, we did not put in

risk any of the used systems or raised any particular concern. Globally(e.g. for Yahoo),

the amount of data extracted is irrelevant.

3.1.2 Software architecture

As mentioned before in section 3.1.1 our POI Extractor is a multi-threaded application

based on the master-worker model. Figure 3.1 depicts the global architecture of the

Chapter 3. Approaches 15

application.

Figure 3.1: Architecture of the POI Extractor

The architecture of the application was specified in order to be easily extended. In

this way, if one wants to extract POIs from a different source than the ones provided,

she can plug-in her own extractor and make use of the multiple resources that our frame-

work provides (HTTP status code checking, proxies, geocoding, reverse geocoding, etc),

significantly decreasing the development time, since the developers job is constrained to

the definition of regular expressions to get the information she wants. The rest is almost

all managed by the framework.

Our POI Extractor is currently able to extract POIs from Yahoo1, Manta2, City

Search3, Yellow Pages4, Boston Globe5, Upcoming6, Yelp7, Sapo8 and Páginas Amare-

las9.

Figure 3.2 depicts the main user interface of the POI Extractor application.
1http://local.yahoo.com
2http://www.manta.com
3http://www.citysearch.com
4http://www.yellowpages.com
5http://www.boston.com/bostonglobe/
6http://upcoming.yahoo.com
7http://www.yelp.com
8http://www.sapo.pt
9http://www.pai.pt

Chapter 3. Approaches 16

Figure 3.2: User Interface of the POI Extractor

Another feature worth mention is the ability of the framework to identify similar

POIs, i.e., POIs from multiple Web sources that refer to the same place. The next

section explains the POI matching algorithm in detail.

3.2 POI matching

When we are extracting POIs from multiple sources, it is important to have a way to

identify similar POIs, so that we do not end up with redundant information and also

to collect as much information as possible about a given place. This requires a way

to identify similarities based, not only in proximity, but also in name likeness. Since

most of the POIs sources are dependent on user contribution, submitting and updating

information about places, it is not feasible to rely only on a näıve string comparison

between POI names. Also, in POI matching, it is crucial to have good precision and

recall results. Precision can be seen as a measure of exactness or fidelity, whereas recall

is a measure of completeness. Precision is defined as the number of true positives (i.e.

the number of items correctly labeled as belonging to the positive class) divided by the

total number of elements labeled as belonging to the positive class, while recall is defined

as the number of true positives divided by the total number of elements that actually

Chapter 3. Approaches 17

belong to the positive class (i.e. the sum of true positives and false negatives). Our

ultimate objective is then to get a good recall while keeping the precision close to 100%.

Our approach makes use of the JaroWinklerTF-IDF class from the SecondString10

project [27] to identify close names, ignoring misspelling errors and some abbreviations.

SecondString is an open-source Java-based package of approximate string-matching tech-

niques developed by researchers at Carnegie Mellon University.

We also make use of the URL of the POIs official website, when available, to identify

both matches that are not recognized by using only the proximity and the name similarity

and also some mismatches that would be considered matches otherwise.

It’s important to note that we do not really score the similarity between POIs. We

just define thresholds that let us decide if they refer to the same place or not.

Taking this into account, two POIs will be considered similar by our algorithm if

they fit into one of the following groups:

• The distance between the two POIs is less than 80 meters, the name similarity is

above 0.70 and one or both POIs do not have website information.

• The distance between the two POIs is less than 80 meters, the name similarity is

above 0.70 and the website similarity is higher than 0.60.

• The distance between the two POIs is less than 80 meters, the name similarity is

above 0.60 and the website similarity is higher than 0.95.

The various thresholds presented were obtained through an analysis of results for a

first experiment we made using low thresholds followed by a iterative process of threshold

tuning, experimentation and evaluation of the results obtained. The tuning process was

not completely blind since, besides comparing the changes made by the previous tuning,

we also had the similarity values obtained for the different metrics (i.e. name and website

likeness and euclidian distance of the location). Therefore, in each iteration we had a

closer idea where the threshold should be.

We also considered using the POI categories to further improve our algorithm. How-

ever, we soon realized that doing so, although it might improve recall, it would certainly

reduce the precision due to the lack of coherency between the taxonomies of the different

POI sources. The only possibility would be to use a common taxonomy to further refine

the matches. Unfortunately, that would require both POIs to be classified in the same

taxonomy. In the next section, we describe some of the approaches we developed to

classify POIs using a common taxonomy.
10http://secondstring.sourceforge.net

Chapter 3. Approaches 18

3.3 POI classification

In this section, we describe the different approaches we tested to classify POIs to a

common taxonomy, which would allow, for instance, many interesting land use studies.

In Urban Planning, the classification of space or land use has been traditionally a

burdensome and manual task. Until recently, the pace of change in available data was

still slow enough to support those approaches, but currently the massive quantity and

update rate of geo-referenced locations (POIs) available in the web demands for an

automatic approach.

Category information from POI sources can allow us to classify POIs to a given

taxonomy. Since in many POI sources each POI is assigned more than one category,

the number of possible combination can be huge. However, finding mappings between

the source taxonomy and the target taxonomy is not always a trivial task. Consider the

following mappings:

“Newspaper Publishers” -> “Newspaper Publishers”

“Newspapers Printing” -> “Newspaper Publishers”

“Laboratories” -> “Research & Development in Biotechnology”

Even though the first mapping is obvious, the other two are not, specially the last one.

This is mainly due to the different levels of granularity and the names of the categories.

The fact that the POIs can belong to multiple categories can help differentiate target

categories, thus fixing some granularity issues. However, sometimes this is not enough,

and in order to determine such mappings it would be necessary additional information

about the POIs, to find the correct mapping. At this point, semantic annotations could

help us disambiguate POIs with similar category sets.

We are particularly interested in classifying POIs to more widespread taxonomies like

NAICS11 (U.S., Canada and Mexico), ISIC12 (United Nations) or CAE13 (Portugal). All

the responsible entities of these classification systems provide a complete listing of the

categories online.

On our approaches, we tried to classify POIs to NAICS mainly because most of the

data we have is from North America, particularly from Boston and New York.

The North American Industry Classification System (NAICS) is the standard used

by Federal statistical agencies in classifying business establishments for the purpose of

collecting, analyzing, and publishing statistical data related to the U.S. business economy
11http://www.naics.com
12http://unstats.un.org/unsd/cr/registry/isic-4.asp
13http://www.ine.pt/ine novidades/semin/cae/CAE REV 3.pdf

Chapter 3. Approaches 19

[28]. NAICS was developed under the auspices of the Office of Management and Budget

(OMB), and was adopted in 1997 to replace the old Standard Industrial Classification

(SIC) system.

NAICS is a two through six-digit hierarchical classification code system, offering five

levels of detail. Each digit in the code is part of a series of progressively narrower

categories, and the more digits in the code signify greater classification detail. The first

two digits designate the economic sector, the third digit designates the sub-sector, the

fourth digit designates the industry group, the fifth digit designates the NAICS industry,

and the sixth digit designates the national industry. A complete and valid NAICS code

contains six digits [29].

Figure 3.3 shows part of the NAICS hierarchy.

Figure 3.3: Example of the NAICS hierarchy

For further information about the NAICS categories the interested reader should go

to appendix E.

Albeit we are interested in classifying POIs to NAICS, it would be possible to apply

our approaches to ISIC or CAE, since the methodology would be analogous.

In our experiments we classify POIs for different NAICS levels (i.e. NAICS categories

with different granularities), particularly two, four and six-digit NAICS codes. This

choice is typical in Urban Planning depending on the study at hand (e.g. level 2 allows to

analyze economic sectors, while level 6 goes to the level of the establishment specificities).

After comparing several classification approaches with and without enriched infor-

mation obtained from semantic annotations, we apply the results to the urban modeling

task of estimating employment size at a disaggregated level. This task is traditionally

made at a coarser level (Traffic Analysis Zone, Census Tract or Block Group level)

than what could be now possible. This part of the work is done in collaboration with

Shan Jiang (shanjang@mit.edu) and Professor Joseph Ferreira (jf@mit.edu) at MIT. We

provide a brief summary of this work in appendix D.

The following subsections present three different approaches we used in order to

address the classification issue.

Chapter 3. Approaches 20

3.3.1 Ontology Matching approach

The idea in this approach was to use ontology mapping to determinate the mappings

between two taxonomies. So, the first step was to get the complete source and target

taxonomies. As said before, NAICS provides the complete taxonomy online. However,

for some POI sources on the Web, it was necessary to gather the taxonomies in a

different way. Although some websites like Yelp provide the complete hierarchy of their

categories, most of them do not. Instead, they require us to scrape throughout a series

of pages, usually searching the main categories pages for their subcategories and so

forth. That was the case of the Yahoo and the Yellow Pages taxonomies. On the other

hand, getting the Manta taxonomy was much harder, since the Manta website does

not provide a Web page with all the top-level categories of their taxonomy. In order

to infer the Manta taxonomy, we had to analyze the Manta webpages for the POIs

from that source, to get the list of the higher level categories of a POI. For example,

if we browse the Manta webpage for the POI “Adam Young Inc” we get the following

category information: “Advertising & Marketing > Radio, Television, and Publishers’

Advertising Representatives > Television and Radio Time Sales”. This indicates that

the bottom level category “Television and Radio Time Sales” is part of the “Radio,

Television, and Publishers’ Advertising Representatives” category, which in its turn, is

part of the “Advertising & Marketing” top-level category. By processing this information

for all Manta POIs in our database we were able to approximate the taxonomy Manta

uses.

Once we had both the source and target taxonomies, we used a conversion tool we

developed to convert them to ontologies, using OWL Lite to describe them.

OWL Lite uses only some of the OWL language features and has more limitations on

the use of the features than OWL DL or OWL Full. For example, in OWL Lite, classes

can only be defined in terms of named superclasses (superclasses cannot be arbitrary ex-

pressions), and only certain types of class restrictions can be used. Equivalence between

classes and subclass relationships between classes are also only allowed between named

classes, and not between arbitrary class expressions. Similarly, restrictions in OWL Lite

use only named classes. OWL Lite also has a limited notion of cardinality - the only

cardinalities allowed to be explicitly stated are 0 or 1 [8]. Although its limitations, OWL

Lite is more than enough to describe a taxonomy, which is an example of a very simple

ontology, where the only relationship between classes is the “subClassOf” relationship.

Using the two generated ontologies, we used COMA++ [11], an ontology mapping

tool, to find the mappings between them. Using the mappings that COMA++ generated,

we then developed a tool to classify the POIs. This tool, checks the mappings for each

Chapter 3. Approaches 21

of the categories of a POI, and classifies the POI according to the mapping with the

highest score according to COMA++.

3.3.2 WordNet approach

In this approach, we use WordNet14 to find synonyms that will help us determine the

closest match in the target taxonomy based on a string comparison library.

WordNet is a large lexical database of English, developed under the direction of

George A. Miller, where nouns, verbs, adjectives and adverbs are grouped into sets of

cognitive synonyms (synsets), each expressing a distinct concept. Using Wordnet, we

are able to generate different category descriptions with the same meaning, but that

might be more similar to the category we are trying to match. This way, if we are

trying to classify a POI with the category “Automobile Dealers” to NAICS, we can use

WordNet to get the synsets for the word “Automobile” and therefore get the category

“Car Dealers”, which can then be easily matched to the NAICS code “441110 - Car

Dealers” using a string comparison library.

Using WordNet is important to generate multiple equivalent definitions of a given

category, but the NAICS itself provides multiple definitions for its own categories, which

increases even further the probability of finding a match.

With the multiple category definitions generated with WordNet for each of the cate-

gories of a POI, we search the NAICS category list in order to find the closest match. We

make use of the string comparison library mentioned in section 3.2 to find the NAICS

definition that is more similar to the one generated. The NAICS code correspondent to

the highest scored match for all the original categories is then assigned to the POI.

The classification procedure can be summarized as follows:

1. Get the categories from the POI we are trying to classify;

2. Generate multiple equivalent definitions for each category using WordNet;

3. Search the NAICS database for the closest global match using a string similarity

library.

3.3.3 Machine Learning approaches

In this approach we use machine learning techniques to estimate the best NAICS code

of a POI.
14http://wordnet.princeton.edu

Chapter 3. Approaches 22

3.3.3.1 POI Sources

Our data for this approach consists of a large set of POIs extracted from Yahoo! through

their public API, another set provided by Dun & Bradstreet (D&B) [30], a consultancy

company that specializes in commercial information and insight for businesses, and a

third one from InfoUSA15 provided by the Harvard Center for Geographic Analysis

(ESRI Business Analyst Data). In the first data set (from Yahoo!), the database is

essentially built from user contributions. In the other two the data acquisition process

is semi-automatic and involves integration of official and corporate databases, statistical

analysis and manual evaluation [30]. The POIs from D&B and InfoUSA have a NAICS

code assigned (2007 version), but the ones from Yahoo! do not. However, each POI

from Yahoo! is assigned, in average, roughly two categories from the Yahoo! category

taxonomy.

We have 156364 POIs from Yahoo!, 29402 from D&B and 196612 from InfoUSA for

the area of Boston, Massachusetts. We also used 331118 POIs from Yahoo! and 16852

from D&B for the New York city area to see how our previously trained model would

perform in a different city. We estimate that the Yahoo’s categories taxonomy has more

than 1300 distinct categories distributed along a 3-level hierarchy.

Given its nature, the growth of the Yahoo! database (or any other user content

platform) is considerably faster than D&B and InfoUSA, and the POI categorization

follows less strict guidelines, which in some cases may become subjective. Our hypothesis

is that there is considerable coherence between Yahoo categories and NAICS codes, such

that a model can be learned that automatically classifies incoming Yahoo! POIs.

There is, however, a major hurdle that needs to be overcome: the same POI (name,

address, latitude, longitude) often does not have the same representation in both databases.

This demands for a careful POI Matching operation.

3.3.3.2 POI Matching and Data Preparation

As mentioned before, our matching algorithm compares POIs according to their name,

Web Site and distance. It makes use of the JaroWinklerTF-IDF class from the Sec-

ondString project [31] to identify close names, ignoring misspelling errors and some

abbreviations (see section 3.2 for more details).

After matching Yahoo! POIs to D&B and InfoUSA, we build two different databases,

where each POI contains a set of categories from Yahoo! and a NAICS classification
15www.infousa.com

Chapter 3. Approaches 23

[h!]
Dataset A Dataset B

NAICS source Manta InfoUSA
Total POIs 7289 44634
Distinct NAICS 504 689
Distinct categories 802 1109
Distinct category combinations 569 1002
Category combinations that appear only once 136 92
Categories that appear only once 181 107
NAICS that appear only once 115 96

Table 3.1: Some statistics of datasets A and B for Boston

provided by D&B and InfoUSA respectively. We started by using only the D&B database

to retrieve the NAICS code for the Yahoo! POIs. However, we later realized that a larger

set could provide a different perspective on the results. By using the POIs from InfoUSA

for Boston we were able to get a dataset six times larger than the initial one, mostly

because the InfoUSA has a better coverage of the Boston Metropolitan Area than D&B

does (at least according to the data in our database). From this point on, we shall refer

to the initial dataset, which results from POI matches between Yahoo! and D&B, as

dataset A, and to the dataset resultant from the POI matching between Yahoo! and

InfoUSA as dataset B. Table 3.1 shows some statistic details of both datasets used.

The dataset A contains 7289 POIs for Boston and Cambridge and 2415 for New

York. In comparison with the original databases, these are much smaller sets due to

a very conservative matching approach (string similarity of at least 80%, max distance

of 80 meters). However the POI quantities are high enough to build statistically valid

models. We performed a detailed analysis of this data and identified 569 different cate-

gory combinations which included only 802 distinct categories from the full set (of over

1300). From D&B, our data covers 504 distinct six-digit NAICS codes. However, the

2007 NAICS taxonomy has a total of 1175 six-level categories, meaning that our sample

data only covers some of the most common NAICS codes, which only represents about

43% of the total number of NAICS categories.

Figure 3.4 shows the distribution of POIs along the different NAICS codes for dataset

A. As we can see in the chart, the distribution is far from being uniform.

Further analysis on the coherence between NAICS and Yahoo! shows that only

in 80,2% of the POIs in dataset A the correspondent NAICS was consistent with the

most common one for that given set of categories, which means that about one fifth

of the POIs are incoherent with the rest of the sample. For different NAICS levels,

particularly for two-digit and four-digit NAICS, the same analysis showed, as expected,

Chapter 3. Approaches 24

Figure 3.4: Distribution of the POIs in dataset A along the different NAICS code

NAICS
code

Description Occurrences

423730 Warm Air Heating and Air-Conditioning Equipment
and Supplies Merchant Wholesalers

707

446130 Optical Goods Stores 200
314999 All Other Miscellaneous Textile Product Mills 193
493120 Refrigerated Warehousing and Storage 136
332997 Industrial Pattern Manufacturing 123

Table 3.2: Most common NAICS in the dataset A

Yahoo! category Occurrences
Salons 157
All Law Firms 129
Government 116
Trade Organizations 115
Architecture 86

Table 3.3: Most common Yahoo! categories in the dataset A

a higher level of coherency. For the two and four-digit NAICS, 87,1% and 83,4% of the

POIs, respectively. Therefore, by having the same set of Yahoo! categories mapping to

different NAICS codes in different occasions, it is not expectable that we obtain a perfect

model that classifies correctly all test cases. In order to understand the impact of these

inconsistencies in the results, we also modified the POI dataset so that the NAICS code

of a given POI would match the NAICS codes of the other POIs with the same category

set, assigning to each POI the most common NAICS code for that given category set in

the dataset. The results of this experiment are also presented in section 5.4.

Tables 3.2 and 3.3 show, respectively, the five most common NAICS and Yahoo!

categories we identified in dataset A.

Chapter 3. Approaches 25

Regarding dataset B, we identified 689 distinct NAICS codes and 1109 distinct cate-

gories of the more than 1300 that we estimate Yahoo! has. The latter are much higher

than the ones from dataset A (only 802) and therefore provides a better coverage of the

source taxonomy. Then number of distinct category combinations almost doubled when

compared to dataset A, which leads to more diversity in the training data and hopefully

more accurate classifiers.

Figure 3.5 shows the distribution of POIs along the different NAICS codes for dataset

B. Similarly to the distribution for dataset A, it is a irregular distribution.

Figure 3.5: Distribution of the POIs in dataset B along the different NAICS code

Another possibility to generate a training set would be to manually classify a small

set of Yahoo! POIs to the NAICS. Even though this would be a terribly painful and

time-consuming task, it might generate a more consistent training set, since the NAICS

classifications provided by D&B and InfoUSA result from the contribution of multiple

users/sources, which makes them somehow subjective (remember that the NAICS codes

of businesses are not always trivial to identify). However, we are interested in automating

the classification process as much as possible, therefore we opted for the previously

described approach through POI Matching. Also, manually producing training sets

with the dimensions of the ones we use would not be feasible.

3.3.3.3 Flat Classification

The “flat classification” task corresponds to directly assigning a NAICS code to a POI

given its set of Yahoo! categories. It is “flat” because the inherent hierarchy of NAICS

is not taken into account in the classification model. Each NAICS code is simply seen

as an isolated string “tag” that is assigned to a POI.

We experimented various machine learning algorithms for this particular classification

task. Table 3.4 provides a brief description of the algorithms we tested. It is not the

Chapter 3. Approaches 26

Implementation Description
DecisionStump Does regression (based on mean-squared error) or classifica-

tion (based on entropy).
FT Classifier for building ’Functional trees’, which are classifi-

cation trees that could have logistic regression functions at
the inner nodes and/or leaves.

ID3 Unpruned decision tree based on the ID3 algorithm.
J48 Pruned or unpruned C4.5 decision tree.

J48graft Grafted (pruned or unpruned) C4.5 decision tree.
RandomForest Forest of random trees.
RandomTree Tree that considers K randomly chosen attributes at each

node. Performs no pruning. Also has an option to allow es-
timation of class probabilities based on a hold-out set (back-
fitting).

DecisionTable Simple decision table majority classifier.
JRip Propositional rule learner, Repeated Incremental Pruning to

Produce Error Reduction (RIPPER), which was proposed
by William W. Cohen as an optimized version of IREP.

IBk K-nearest neighbors classifier. Can select appropriate value
of K based on cross-validation. Can also do distance weight-
ing.

IB1 1 - nearest-neighbor classifier. Simplification of IBk.
K* K* is an instance-based classifier, that is the class of a test

instance is based upon the class of those training instances
similar to it. It differs from other instance-based learners in
that it uses an entropy-based distance function.

BayesNet Bayesian Network
NaiveBayes Naive Bayes model

MultilayerPerceptron A classifier that uses backpropagation to classify instances.
ZeroR Predicts the mean (for a numeric class) or the mode (for a

nominal class).
OneR Uses the minimum-error attribute for prediction, discretiz-

ing numeric attributes.

Table 3.4: Brief description of each Weka algorithm tested

scope of this paper to describe any of the algorithms in detail. The interested reader is

redirected to dedicated literature ([34, 35]).

In our experiments we built classifiers for different NAICS levels (i.e. NAICS cat-

egories with different granularities), particularly two, four and six-digit NAICS codes.

This choice is typical in Urban Planning depending on the study at hand (e.g. level 2

allows to analyze economic sectors, while level 6 goes to the level of the establishment

specificities).

Chapter 3. Approaches 27

POI Name Yahoo Categories Tags
Willett Institute of
Finance

Financial Planning, Invest-
ment Services

income, shares, Security Anal-
ysis, plan, Cash

W3 Edge LLC Computer Communications,
Web Services

network, software system, de-
vices, servers, wireless tech-
nologies

Curis Incorporated Doctors & Clinics, Laborato-
ries, Medical Laboratories

hospital, General practice,
chemistry, clinic, Clinical lab-
oratory

Table 3.5: Some tags produced by Kusco.

3.3.3.4 Extension with Semantic Annotations

Describing POIs only by one concept or two (their categories) may be not sufficiently

diverse to help data mining algorithms to classify more precisely. We propose the use

of semantically enriched [36] information about places to incorporate more attributes

in order to refine POI details. This enrichment is made by the KUSCO system, which

basically consists of gathering textual descriptions available on the Wikipedia and ap-

plying Text Mining techniques on them, such as Part-Of-Speech tagging, Noun-Phrase

Chunking and Named Entity Recognition. As one POI may belong to more than one

category, all its categories descriptions are processed. By computing TF IDF, the most

relevant tags become the index of a place. These tags are also semantically contextu-

alized in WordNet [37] in order to aggregate synonym tags in just one entry. Table 3.5

shows some examples of POI indexes produced.

A sample of 150 Tag Indexes about Boston POIs were manually validated by 22

volunteers who know the city in study, answering the question, for each word, whether

it is related to the POI or not. We obtained a precision of 56% (σ = 0.2) considering all

unanswered tags as invalid. In some cases even the volunteers disagree, reflecting the

subjective nature of this information. To further validate this data for our purposes,

we analyzed whether words clustered around categories and the accuracy reaches 97%

(using the K-Means algorithm to cluster and classify).

These new tags were associated to each POI and the process of section3.3.3.3 was

repeated.

Please note that all the POI semantic enrichment work is part of Ana Alves [36] PhD

thesis. It is described here only to help the reader understand the source of the semantic

tags and thus help her comprehend the obtained results.

Chapter 3. Approaches 28

3.3.3.5 Hierarchical Classification

In this approach we take advantage of the hierarchical structure of the NAICS and build

a hierarchy of classifiers. In this hierarchy each classifier decides what classifier to use

next, narrowing down the NAICS code possibilities on each step, until a final 6-digit

code (or 4-digit code, depending on the goal) is achieved. Figure 3.6 depicts one possible

hierarchy.

Figure 3.6: A possible hierarchy of classifiers

By looking at this hierarchy, we can see that it has 3 levels (2, 4 and 6-digit NAICS).

The first level always consists of a single classifier that decides which NAICS sector

(2-digit code) the POI belongs to. Taking the sector into account, the algorithm then

decides which level 2 classifier to use next. After that, the same process repeats itself

for all the levels until a leaf node is achieved in the tree structure of the hierarchy.

To provide an example consider a POI that has the following NAICS code: 111110.

According to figure 3.6 the top-level classifier will decide that it belong to sector 11

(“Agriculture, Forestry, Fishing and Hunting”) and the left-most level 2 classifier will

be used next. Then, this classifier will determine that the 4-digit NAICS code of the

POI is 1111 (“Oilseed and Grain Farming”) and, based on this decision, the left-most

classifier in the third level of the figure will be used, and will supposedly classify the

POI with the NAICS code 111110 (“Soybean Farming”). Of course along the top-down

course a mistake can be made by one classifier. In this case, the error would propagate

downwards and there would be no way to recover from it, and hence the final NAICS

code would be wrong.

Our hypotheses is that by using a hierarchy of classifiers, each classifier will have

less possible outputs and hence the classification scheme can be less complex and more

accurate. If we consider, for example, the ID3 algorithm, the entropy values for the

Chapter 3. Approaches 29

different features will be computed according to a smaller class subset, and therefore the

selection of the next feature to use (which is based on the entropy calculation) will be

different and the resulting tree will also be different. Hopefully, the generated classifier

can be more suited to that particular classification (like deciding for a POI that belongs

to NAICS sector 53 if it belongs to the subcategory 531, 532, etc).

In our experiments we use four different hierarchies of classifiers, two with 2 levels:

• NAICS 2 and NAICS 4

• NAICS 2 and NAICS 6

and other two with 3 levels:

• NAICS 2, NAICS 3 and NAICS 4

• NAICS 2, NAICS 4 and NAICS 6

In order to implement the hierarchical classifiers we took advantage of the open-

source feature of Weka and its very well documented Java API, and developed our own

Java code using the already implemented algorithms and classes that Weka provides.

As one would expect the computational complexity of the classifiers increased many

times, depending on the base machine learning algorithm used. As a result, it was not

possible for us to test some of the more computational intensive algorithms. However,

like we did for the flat classification, we tried to test different types of machine learning

algorithms like: bayesian networks, tree-based learners, instance-based learners, rule-

based learners. Neural networks were not possible to test due to their computational

demands, both in processing power and memory.

3.4 POI generation

By using multiple sources of geo-referenced information, we want to be able to determine

places of interest that reflect the current interests of the population. There are certain

challenges regarding this, like temporality constrains. The interest that a place raises

in a person varies along the time, according to many factors, which can be economical,

social, cultural or even political. Also, naming a place accordingly is another great

challenge. It isn’t that hard to determine places that generate a lot of “buzz”, the

problem is to find the ones that are really relevant, properly name them and distinguish

them from other neighboring places of interest.

Chapter 3. Approaches 30

Regarding the sources of information, Flickr is an obvious choice due to its dimension

and hence we used it in our research. However, it would be interesting to find other

sources that are not restricted to photos, and also include news, blogs and twits. Flickr

supplies a map interface through which users can drag their photos to the map locations

where the photos were taken. In addition, many photos are accurately geo-tagged using

GPS logs or location-aware devices.

Once we decided to use Flickr as our data source we started gathering as much

information as possible from it. Since most of data is for the Boston Metropolitan Area

we decided to also focus this research in that area. The extraction phase took almost

two months, and allowed us to collect a total of 255212 photos and 75986 distinct tags.

Each photo has an average of 7 tags associated with it.

Using the data we collected from Flickr, we applied two different clustering algo-

rithms: K-means and DBScan. K-means clustering is a well known method of cluster

analysis which aims to partition n observations into k clusters in which each observation

belongs to the cluster with the nearest mean, while DBScan is a density-based algorithm

for discovering clusters in large spatial databases with noise. The latter, in contrast with

the former, has the advantage of not requiring the user to explicitly define the number

of clusters we want the algorithm to generate. Instead, it requires us to define the ep-

silon (�) and the minimum number of points required to form a cluster (minPts). It

starts with an arbitrary starting point that has not been visited. The �-neighborhood

for this point is retrieved, and if it contains sufficiently many points, a cluster is started.

Otherwise, the point is labeled as noise. Note that this point might later be found in a

sufficiently sized �-environment of a different point and hence be made part of a cluster.

If a point is found to be part of a cluster, its �-neighborhood is also part of that cluster.

Hence, all points that are found within the �-neighborhood are added, as is their own

�-neighborhood. This process continues until the cluster is completely found. Then,

a new unvisited point is retrieved and processed, leading to the discovery of a further

cluster or noise.

For both algorithms we used different parameter combinations in order to find the

one that best suits our goals.

Each of the centroids of the identified clusters was then considered to be a place of

interest. Since the pairs latitude/longitude are pretty much meaningless by themselves,

we tried to identify the tags that are more representative of the place/cluster using

TF-IDF (term frequency, inverse document frequency), i.e., tags that appear frequently

inside a cluster but infrequently elsewhere. TF-IDF is often used in information retrieval

and text mining. The TF-IDF weight is a statistical measure used to evaluate how

important a word is to a document in a collection or corpus. The importance increases

Chapter 3. Approaches 31

proportionally to the number of times a word appears in the document but is offset

by the frequency of the word in the corpus. We adapted the standard TF-IDF in the

following way: a document is represented by a cluster and the terms correspond to the

tags. Therefore the TF-IDF can be computed as

tft,c =
nt,c�

k∈T

nk,c

(3.1)

idft = log
|C|

|{c : c ∈ C ∧ t ∈ c}| (3.2)

tfidft,c = tft,c ∗ idft (3.3)

where t is a tag and c a cluster and therefore:

• nt,c denotes the number of occurrences of tag t in cluster c

• |C| is the total number of clusters and

• |{c : c ∈ C ∧ t ∈ c}| is number of documents where the tag t appears

In order to further improve the TF-IDF results we start by applying some basic

filters of tags we know beforehand that we do not want to consider. With these filter

we remove:

• tags with less than 3 consecutive characters

• tags that match the regular expression: ’geo:lat=[0-9. -]*’

• tags that match the regular expression: ’geo:long?=[0-9. -]*’

• tags that match the regular expression: ’meta:exif=’

Since the tags associated with each photo on Flickr result from user typing them in, it

is fairly common to find errors, misspells and different ways writing names of places like

“Boston Common” and “BostonCommon”. The fact that tags in some system can have

spaces while in others do not, further potentiates the risk of finding different ways of

referring to the same place. Hence, it might not be the best approach to use the standard

TF-IDF measurement. Therefore, we made some changes to the TF-IDF computation in

order to take tag similarity into account. Our similarity-based TF-IDF can be calculated

as follows:

Chapter 3. Approaches 32

tft,c =

�

k∈St

(nk,c ∗ Simk,t)

�

k∈T

nk,c

(3.4)

idft = log
|C|�

k∈St

(|{c : c ∈ C ∧ k ∈ c}| ∗ Simk,t)
(3.5)

tfidft,c = tft,c ∗ idft (3.6)

where Simk,t denotes the similarity score between tags k and t according to the

JaroWinklerTF-IDF algorithm from the SecondString project also mentioned in section

3.2, and St is the set of tags that are similar to tag t (i.e. similarity score is above a

given threshold).

Making these changes to the TF-IDF computation significantly increased the CPU,

and hence the time the algorithm took to run increased immensely. In order to cope

with that increase we parallelized the TF-IDF algorithm to benefit from the multiple

cores the CPU’s of our machines had. To further reduce the computational time, we

calculated all the similarity scores between tags only once and saved them in memory so

that we didn’t have re-calculate them each time we needed them. To avoid an excessive

memory usage, we made an optimization which consisted in pre-computing all tags that

are similar to each tag, maintaining only that information in memory instead of all

similarity scores between all tags.

Using our modified version of TF-IDF, we display for each cluster the top-5 tags

with higher TF-IDF scores. We opted to display 5 tags instead of a single one mainly

because, most of the times, a single tag is not good enough to unambiguously represent

a place. Instead, by showing 5 tags we can help the user to better contextualize the

place and know further aspects about it.

Chapter 4

Validation

In this chapter we describe how we perform validation of the different approaches devel-

oped.

Validating the quality of our approaches is a complicated issue. Even though the

validation of the POI classification is relatively simple to do, validating the POI matching

or the POI generation algorithms is not so easy, specially in an automated way. Due

to their nature, these approaches rely only on human evaluation, making the validation

process a lot more time consuming and less reliable. Therefore, whenever possible, we

try to use an automatic validation scheme.

4.1 POI matching

In order to validate our POI matching approach, we made an analysis of the precision

and the recall of our algorithm. To measure the precision, we generated 5 csv files with

200 random mappings between POIs from Yahoo and Manta, and distributed them

between five volunteers that belong our working group. Each of those 200 entries in the

csv files contained almost all the information one needed to check if the two POIs were

the same. This information included: names, categories, distance between the two POIs

and the correspondent websites, so that, in a last case scenario, one could navigate to

the websites for confirmation.

Regarding the recall estimation, we also generated 5 csv files, but this time, with

50 random entries each, representing POIs that were not considered matches but that

were very close (the distance was a bit off, or the name similarity was a little below the

defined threshold).

33

Chapter 5. Validation 34

The results we obtained were very good. We obtained a precision of 98% and a

estimated high value for recall.

4.2 POI classification

A NAICS code is assigned to a business according to the activity that generates more

revenue. Therefore, sometimes is not obvious, even for an experienced person, to find

out what the NAICS of a business is. Besides, there is no central government agency

with the role of assigning, monitoring, or approving NAICS codes for establishments.

Individual establishments are assigned NAICS codes by various agencies for various

purposes using a variety of methods. Due to this ambiguity, some websites often assign

more than one NAICS to a business. Even worse, these websites most of the times rely

on user contribution, thus the NAICS they show might not be correct at all. All this

makes the validation of our approach quite difficult.

The easiest way to perform validation is to use a set POIs that we already know the

NAICS code through other sources (like from D&B or InfoUSA using POI Matching).

This way, for the Wordnet and the Ontology Matching approaches, we can take the

POIs from that set, classify them with NAICS using our approaches and then compare

the results with NAICS provided by D&B or InfoUSA for that POI. Similarly, for the

machine learning approaches we use ten-fold cross-validation, a technique for estimating

the performance of a predictive model. In ten-fold cross-validation, the original sample is

randomly partitioned into ten subsamples. Of the ten subsamples, a single subsample is

retained as the validation data for testing the model, and the remaining nine subsamples

are used as training data. The cross-validation process is then repeated ten times (the

folds), with each of the ten subsamples used exactly once as the validation data. The ten

results from the folds are then averaged to produce a single estimation. The advantage

of this method over repeated random sub-sampling is that all observations are used for

both training and validation, and each observation is used for validation exactly once.

For the hierarchical approaches we also perform ten-fold cross-validation, but the

data division for training/testing is slightly more complicated than for standard flat

classification. Like in “normal” ten-fold cross-validation, we also start by leaving 10%

of the data out for test and use the remaining 90% for training, repeating this process

ten times. However, each classifier in a given level only receives the part of those 90%

of training data that respects him. For instance, a level two classifier for deciding which

sub-category of NAICS sector 53 a given POI belongs to would only be trained with

POIs that belong to that NAICS sector. Hence, the only classifier that receives all the

training data (90%) would be the top-level classifier (i.e. the one that decides which

Chapter 5. Validation 35

NAICS sector a POI belong to). After the training phase, the hierarchy is tested with the

10% of the data left out. This process is repeated ten times, and the average accuracy

over the ten iterations is determined.

It is however possible that the NAICS determined by our approach is better, i.e.

makes more sense, at least from the user point of view, than the one provided by D&B

or InfoUSA. If we think about the machine learning approach, two POIs from Yahoo

that present the same categories will be classified to the same NAICS, which makes

sense. However, that NAICS may not match the one from D&B or InfoUSA. In fact, if

from the training process resulted that most of the POIs from Yahoo! with a given set

of categories have a certain NAICS, why shouldn’t this one? Of course this raises, once

again, the question of the consistency and quality of the POI data. If, for instance, the

Yahoo! POIs are not correctly categorized, then this will not apply.

4.3 POI generation

Once again, in order to validate the generated POIs we rely essentially on human vali-

dation. However, in this case, this kind of validation is especially difficult to do, because

it requires some knowledge from the test subjects about the study area, in order to be

able to recognize the places and do a proper confirmation that a place is in fact a point

of interest or not.

Due to these kinds of issues, it was not possible for us to perform validation of these

approaches. Instead, we present some results obtained and study cases that help us

understands the strengths and the weaknesses of this approach.

Chapter 5

Results

5.1 POI extraction

In order to be able to see the POIs in a map along with their details and actually interact

with them by clicking on them, we developed a website using the Google Maps API and

a REST Web service that serves as an interface to our database. A complete list of the

methods made available by the REST Web service, along with the correspondent descrip-

tion can be seen in Appendix C.The developed website makes use of MarkerClusterer1, a

JavaScript library developed by Xiaoxi Wu and altered by us in order to meet our needs.

MarkerClusterer allows us to group the markers displayed in a map in clusters, so that it

is possible to view a large number of POIs simultaneously in a map. Figure 5.1 shows a

screenshot of this website. However, the reader can take a look at the website by himself

and interact with it in http://greenhomes.dei.uc.pt:8080/Maps/index.html.

We also developed a simple Android application to visualize the POIs of our database,

that allows the users to select the POI source and the NAICS industry sector he is

interested in. Figure 5.2 shows three screenshots of this application.

Currently our POI database has a total of 981956 POIs, mainly from the areas of

Boston, New York, San Francisco and Lisbon. Table 5.1 shows the number of POIs

according to the area and the POI source.

We made a simple analysis of the coverage of the different POI sources by representing

all the POIs for the a given area in a map, using mapping tools like qGIS and uDig.

Figures 5.3 and 5.4 show maps of the POIs for the Boston Metropolitan Area from

InfoUSA and Yahoo respectively.
1http://gmaps-utility-library.googlecode.com/svn/trunk/markerclusterer/1.0/docs/reference.html

36

http://greenhomes.dei.uc.pt:8080/Maps/index.html

Chapter 4. Results 37

Figure 5.1: Screenshot of the visualization platform

Figure 5.2: Screenshots of the Android visualization application

5.2 POI analysis

In order for us to further understand some aspects of the collected POI data, we made

a few analyses that we will talk about in this section. It is important to note that is

Chapter 4. Results 38

New York Boston S. Francisco Lisbon Total
InfoUSA - 196612 - - 196612
Yelp 5179 10900 0 - 16498
Yellow Pages 7694 13302 0 - 21774
Upcoming 96 1000 13 - 2098
City Search 377 7070 0 - 8367
Yahoo! 183147 156364 89331 - 433375
Manta 16496 29402 0 - 46188
Sapo - - - 37465 37465
Pág.Amarelas - - - 153737 153737
Total 374962 417517 181546 191202 981956

Table 5.1: Number of POIs according to the area and the POI source

Figure 5.3: POIs from InfoUSA for the Boston Metropolitan Area

not our purpose to make a exhaustive analysis of data. Instead, we are interested in

displaying some interesting analyses than can be performed using classified POI data.

The analysis performed is based on the POI data from Manta and from InfoUSA for

the Boston Metropolitan Area. We chose this data because it is classified with NAICS

codes. Using these codes, we defined vectors to represent areas using the ID of that area

and the number of POIs for each NAICS sector. In order for the analysis to be fair,

we normalized the data by dividing the number of POIs for the size of the area, hence

each vector has the following format: [area ID, density of the POIs from NAICS sector

11, density of the POIs from NAICS sector 21, density of the POIs from NAICS sector

Chapter 4. Results 39

Figure 5.4: POIs from Yahoo for the Boston Metropolitan Area

22, ...], where the density is expressed in number of POIs by area unit. By grouping

the POIs in area and by NAICS sectors, we were able to compare different areas of the

Boston Metropolitan Area.

We started by comparing the two POI sources. Figure 5.5 shows a chart with the

distribution of the POIs for the different NAICS sector for both POI sources. As we can

see in this chart, the sources are quite different, being the InfoUSA the most complete

one for almost all of the sectors.

Similarly to that analysis, we compared five different towns according to their POI

densities distributions along the different NAICS sectors. Figure 5.6 shows the results

obtained. These results, like all the remaining, are only based on POI data from In-

foUSA.

As we can see in figure 5.6 the POI densities and distribution are quite different from

town to town. For instance, Winthrop, which is a small town in surroundings of Boston,

has much smaller POI densities than Boston and Cambridge, which are towns with high

populations.

Inspired by the results in figure 5.6 we made a clustering analysis of the vectors defined

using Expectation Maximization (EM) algorithm. This algorithm is implemented by

Weka in a way that it does not require us to define the number of clusters we want to

Chapter 4. Results 40

Figure 5.5: Distribution of the POIs for the different NAICS sector

Figure 5.6: Comparison between five different towns according to their POI distribu-
tions along the different NAICS sectors

generate as parameter. Instead, it uses cross-validation for determine that number. The

process follows the following steps:

1. the number of clusters is set to 1

2. the training set is split randomly into 10 folds.

3. EM is performed 10 times using the 10 folds the usual CV way.

4. the loglikelihood is averaged over all 10 results.

Chapter 4. Results 41

5. if loglikelihood has increased the number of clusters is increased by 1 and the

algorithm continues at step 2.

The results obtained can be seen in figures 5.7 (cluster assignments) and 5.8 (cluster

centroids).

Figure 5.7: EM cluster assignments

Figure 5.8: EM cluster centroids

Based in the results from the clustering, many conclusions can be drawn. For ex-

ample, we can see that there are two towns (Boston and Cambridge) that distance

Chapter 4. Results 42

themselves from the rest of the towns and are somehow similar to each other. We

can also see that the centroid of the cluster they belong to (see figure 5.8, in purple)

represents areas of high POI densities.

We also investigated possible correlations between the different NAICS sectors. The

correlation matrix is presented in figure 5.9. It is important to note that this analysis

was made at the block group level and not at the town level like all the others.

Figure 5.9: Correlation matrix of the different NAICS sectors

By analyzing the correlation matrix, we can see that the strongest correlations occur

between the following NAICS sectors:

• NAICS sector 44 (Retail Trade) and sector 81 (Other Services (except Public

Administration)

• NAICS sector 44 (Retail Trade) and sector 72 (Accommodation and Food Services)

• NAICS sector 72 (Accommodation and Food Services) and sector 81 (Other Ser-

vices (except Public Administration))

These correlations suggest that, for instance, when there is a high density of POI

from sector 44 (Retail Trade) in a given block group, there also is a high density of POIs

from sector 72 (Accommodation and Food Services), which somehow goes along with

common sense.

Finally, we performed a Principal Component Analysis (PCA) using the same vectors

described before. PCA involves a mathematical procedure that transforms a number of

possibly correlated variables into a smaller number of uncorrelated variables called prin-

cipal components. The eigenvalues and the proportions of the determined eigenvectors

can be seen in figure 5.10. As we can see, only the first eigenvector accounts for almost

Chapter 4. Results 43

75% of the variability in the data, and eight eigenvectors account for more than 96% of

the variability, which also points to a strong correlation.

Figure 5.10: Principal Component Analysis (PCA) results

5.3 POI matching

The following list shows five examples of POI matches that can help understand not

only how the approach works, but also some of the issues we faced when developing it.

1. Name1: Copy Cop Llc
Name2: Copy Cop
Website1: http://www.copycop.com
Website2: http://copycop.com/
Categories1: Photocopying and duplicating services in Boston, Quick Printing
Categories2: Commercial Printers, B2B Printing Facilities
Name Similarity: 0.816
Distance: <5 meters

2. Name1: American Plumbing & Heating
Name2: American Plumbing & Heating
Website1: -
Website2: -
Categories1: Plumbing Contractors in Boston, Plumbing & Hvac Contrs
Categories2: Plumbing, B2B Contractors
Name Similarity: 1.000
Distance: >65 meters

3. Name1: Ultimate Parking Inc
Name2: Ultimate Parking LLC
Website1: http://www.ultimateparking.com
Website2: http://ultimateparking.com/
Categories1: Automobile parking in Boston, Automobile Parking, Parking Lots and
Garages
Categories2: Parking Services

Chapter 4. Results 44

Name Similarity: 0.667
Distance: <15 meters

4. Name1: Boston Public Schools
Name2: Boston Public School Admin Lib
Website1: http://www.boston.k12.ma.us
Website2:
Categories1: School custodian, contract basis in Boston, Maintenance Department For
Schools, Janitorial Services
Categories2: Libraries
Name Similarity: 0.767
Distance: <15 meters

5. Name1: Summit Logistics Llc
Name2: Summit Logistics
Website1:
Website2:
Categories1: Silk screen design in Boston, Warehousing & Shipping Broker, Graphic
Design Services
Categories2: Industrial Importers
Name Similarity: 0.816
Distance: <15 meters

By analyzing the results, we can see that matches 1 and 2 are correct even thought

the distance between the two POIs in match number 2 is slightly high. Match number 3

is a good example where the use of the website URL allowed to find a match that would

be discarded otherwise due to the low name similarity. Match number 4 is a example of

a mismatch that was considered a match by the algorithm. One could argue that this

mismatch could be discovered if we used the category information, because they are way

different. However, doing so, could also discard matches like match number 5, where

the names are similar and the distance is short but the categories are quite different or,

at least, difficult to compare.

Using the thresholds defined in section 3.2, by manually validating a random subset

of the POI matches identified (6 sets of 50 random POIs assigned to 6 volunteers), we

concluded that the percentage of correct similarities identified was above 98% (σ = 1.79).

Differently to validations mentioned in this document, this is an extremely objective one,

not demanding external participants or a very large sample 2.
2Using the central limit theorem, the standard error of the mean should be near 0.73. Assuming

an underestimation bias for n=6 of 5% (according to [32]), accuracy keeps very high, being the 95%
confidence interval [96.5%, 98.7%]

Chapter 4. Results 45

Approach NAICS2 NAICS4 NAICS6
Coma++ w/context 85.92 50.89 33.43
Coma++ nodes only 69.23 39.37 20.96
Wordnet+Levenstein 52.66 29.19 20.18
Wordnet+JaroWinkler v1 61.81 40.08 31.30
Wordnet+JaroWinkler v2 75.32 58.63 42.23
Wordnet+JaroWinkler v3 79.31 59.91 43.08

Table 5.2: Accuracies for the Ontology Matching (COMA++) and WordNet ap-
proaches

5.4 POI classification

In this section we present the results we obtained for the different approaches we used

for POI classification.

Table 5.2 and figure 5.11 shows the results we obtained using the Ontology Matching

and the WordNet approaches for different NAICS levels, i.e., two, four and six-digit

NAICS codes. The “w/context” and the “nodes only” in the COMA++ results indicate

the type of ontology mapping performed: using the context of the class to determine the

mappings or only the nodes. The four WordNet approaches represented in the graph

refer to multiple implementations. The first one uses the Levenstein string comparison

algorithm to compare the category names, while the others use the already mentioned

JaroWinklerTFIDF library from the SecondString project. The multiple versions (v1,

v2 and v3) refer to different implementation for the match weighting and result merging

algorithms.

If we analyze the results, we can see that all the algorithms perform better for the

two-digit NAICS, which is expected since the four and six-digit NAICS are much nar-

rower than the two-digit and thus more difficult to determine. We can also notice

that the WordNet approach performs better than Ontology Mapping approaches using

COMA++, except for the two-digit NAICS where one of the COMA++ approaches

outperformed the others. However, it is important to note that COMA++ is not able

to find mappings for all the classes in the ontology (i.e. not all the categories have a

mapping), therefore the approach is only able to classify a small part of the dataset, and

the results depicted in Figure 5.11 are only referent to the POIs the algorithms were

able to classify. The same problem happens with the WordNet approach because we

defined a threshold to discard matches with less than 0.70 of similarity in the category

names, thus the final NAICS code is determined according to the best match in the

set of matches with a similarity above 0.70. Nevertheless, the percentage of the POIs

Chapter 4. Results 46

Figure 5.11: Accuracies for the Ontology Matching (COMA++) and WordNet ap-
proaches

that the WordNet approach is not able to classify is below 15% while for the COMA++

approaches this value can go up to 50%.

Table 5.3 shows the accuracies obtained using different machine learning algorithms

for different NAICS levels (two, four and six-digit codes) using dataset A. There are

some missing results in the table because the algorithm took over 72 hours to run.

Before we start analyzing the machine learning results, it is important to mention

that the ZeroR and OneR algorithms, because of the way they work, were not applied to

“compete” for the best results against the other algorithms. Instead, they merely serve

as baselines for the other algorithms.

As expected, we obtained better results classifying POIs to the two-level NAICS than

for the six-level NAICS, since the eventual noise due to ambiguous classifications in the

POI datasets is smaller.

We can see that the tree-based (e.g. ID3, RandomForest) and instance-based learn-

ing approaches (e.g. IBk, K*) are the ones that perform better in this classification

Chapter 4. Results 47

Algorithm NAICS2 NAICS4 NAICS6
DecisionStump 22.271 10.137 -
FT 85.759 - -
ID3 84.248 75.837 72.119
J48 83.397 75.755 71.282
J48graft 83.823 76.358 71.776
RandomForest 84.879 77.099 72.983
RandomTree 84.207 75.906 72.379
DecisionTable 77.840 71.256 -
JRip 79.624 72.187 67.838
IB1 80.736 70.952 65.299
IBk 84.989 76.811 73.052
K* 84.893 77.566 73.408
BayesNet 80.681 56.394 42.440
NaiveBayes 74.547 40.354 28.444
MultilayerPerceptron 5.762 - -
ZeroR 14.586 9.701 9.701
OneR 21.858 12.349 12.088

Table 5.3: Results obtained for the different machine learning algorithms with POIs
from dataset A for the Boston area

task, especially the latter. Notice that only 80,2% of data is classified in a totally non-

ambiguous way. The most successful algorithm is IBk (with k=1), which essentially

finds the similar test case and assigns the same NAICS code. The difference in accuracy

between tree-based and instance based approaches is very small to make strong conclu-

sions, however we could expect that instance based models bring better results since

the distribution of the different Yahoo! categories is relatively even among examples of

the same NAICS code (implying no clear “dominance” of some categories over others).

Understandably, the Naive Bayes algorithm performs badly because the assumption

that different Yahoo! categories for the same NAICS classification are independently

distributed is obviously false (e.g. “Doctors & Clinics, Laboratories, Medical Labora-

tories” are correlated). Such assumption is not fully necessary in Bayesian Networks,

which actually brings better results. Unfortunately, we could not find a model search

algorithm that performs in acceptable time (less than 72 hours) and produces a more

accurate model. We used Simulated Annealing and Hill Climbing.

In table 5.4 we can see the results obtained by modifying the POI dataset, so that the

NAICS codes of POIs where ambiguities arise are grouped together in the same “super-

category”, eliminating the inconsistencies. This way, if 95% of the POIs from Yahoo!

with both the categories “Book Printing” and “Book Publishing” have the NAICS code

“323117”, we will change the NAICS code of the remaining 5% of the POIs with those

two categories to “323117”.

Chapter 4. Results 48

Algorithm NAICS2 NAICS4 NAICS6
ID3 92.975 89.728 88.680
RandomForest 93.609 90.805 89.846
IBk 94.170 91.189 89.979

Table 5.4: Results obtained for the different machine learning algorithms using a
re-classified dataset

Algorithm NAICS2 NAICS4 NAICS6
ID3 83.061 73.586 69.209
RandomForest 83.488 74.867 70.318
IBk 83.360 74.909 70.276

Table 5.5: Results obtained for the different machine learning algorithms using POI
data from Boston for training and POI data from New York for testing

By comparing the results in table 5.4 with the results in table 5.3, we realize that

the NAICS labeling inconsistencies in the POI data have a major negative effect in the

performance of the machine learning algorithms, reducing the accuracy in more than

16% in some cases for the six-level NAICS codes.

It would be expectable to obtain accuracies more close to 100% for the results in

table 5.4. However, that does not happen due to the fact that 115 of the 514 NAICS

codes covered by our dataset A only occur once. Therefore, when we split the dataset to

perform the ten-fold cross-validation, a significative number of the test cases will have

NAICS codes that the algorithm was not trained for, causing it to incorrectly classify

them.

Table 5.5 shows the results we obtained by training the machine learning approaches

with dataset A from Boston and Cambridge and testing them with New York POI data.

As we can see in the results, if we apply the generated model to a different city, it still

performs well, even though the accuracy drops a little in some cases. This is perfectly

understandable since even the Yahoo! taxonomy differs slightly from city to city.

Table 5.6 shows the results obtained for the different machine learning algorithms

using dataset B.

By analyzing the results from table 5.6 we can see that the results have significantly

improved over dataset A, which shows the importance of the training data in the per-

formance of the machine learning algorithms.

Table 5.7 shows the results obtained using both the categories from Yahoo! and the

semantic annotations. Please remember that the presented results are based on semantic

enriched POIs from dataset A.

Chapter 4. Results 49

Algorithm NAICS2 NAICS4 NAICS6
ID3 90.567 85.459 82.091
J48 90.113 85.085 81.831
RandomForest 90.758 85.710 82.436
RandomTree 90.500 85.275 81.818
JRip 85.748 80.998 78.495
IB1 87.224 81.495 76.826
IBk 91.024 85.974 82.553
K* 90.227 85.849 82.522
BayesNet 88.961 77.964 67.877
NaiveBayes 87.910 70.250 56.052
ZeroR 16.580 4.994 4.797
OneR 23.013 9.480 7.107

Table 5.6: Results obtained for the different machine learning algorithms with POIs
from dataset B for the Boston area

Algorithm NAICS2 NAICS4 NAICS6
ID3 83.967 75.986 72.087
J48 82.935 75.504 71.559
RandomForest 86.467 78.876 75.848
RandomTree 81.467 73.417 69.289
JRip 81.307 73.509 69.289
IB1 85.435 76.582 72.706
IBk 86.903 79.059 75.619
K* 86.834 79.541 76.261
BayesNet 80.183 56.467 40.137
NaiveBayes 74.541 30.688 20.091

Table 5.7: Results obtained for the different machine learning algorithms with POI
data from the Boston area using semantic annotations

By comparing the results in table 5.7 (with semantics) with the ones presented in

table 5.3 (without semantics), we can see that there was some improvement in some

algorithms (like IBk). This is somehow understandable if we consider the way IBk (k-

nearest neighbor) works. Since it measures the euclidean distances from the test case

to all training examples, having more information about the POI (in this case semantic

annotations) would supposably help, thus increasing the accuracy. On the other hand the

performance of other algorithms such as ID3 decreased when compared to the results

from table 5.3. This fact suggests that having semantic information about the POIs

might be difficulting the choice of the next feature to use in the decision tree by messing

with the entropy and gain computation.

Finally tables 5.8 to 5.11 show the results obtained using the different hierarchical

classification schemes for various types of machine learning algorithms. Like in previous

Chapter 4. Results 50

Flat classification Hierarchical classification
Algorithm Accuracy Level1 acc. Level2 acc.
ID3 85.459 90.659 85.620
J48 85.085 90.172 84.9009
RandomForest 85.710 90.959 85.969
RandomTree 85.275 90.509 85.315
JRip 80.998 85.806 80.440
IB1 81.495 87.637 81.126
IBk 85.974 91.080 86.097
K* 85.849 90.305 85.244
BayesNet 77.964 88.002 74.243
NaiveBayes 70.250 30.688 20.091

Table 5.8: Comparison between the results for dataset B using flat classification
(4-digit NAICS) and hierarchical classification with 2 levels (NAICS 2 and 4)

Flat classification Hierarchical classification
Algorithm Accuracy Level1 acc. Level2 acc. Level3 acc.
ID3 85.459 90.659 88.766 85.575
J48 85.085 - - -
RandomForest 85.710 - - -
RandomTree 85.275 90.509 88.490 85.226
JRip 80.998 - - -
IB1 81.495 87.637 85.336 81.126
IBk 85.974 91.080 89.219 86.097
K* 85.849 - - -
BayesNet 77.964 - - -
NaiveBayes 70.250 - - -

Table 5.9: Comparison between the results for dataset B using flat classification
(4-digit NAICS) and hierarchical classification with 3 levels (NAICS 2, 3 and 4)

tables, there are some missing values because the algorithms took over 72 hours to run.

Intuitively, we thought that performing classification in a hierarchical way would

always produce better results than using standard flat classification, however it was not

the case. Instead, for some algorithms the results improved while for others they didn’t.

Therefore, we cannot say that using hierarchical classification for classifying POIs to

NAICS is always a better solution. In fact, as shown before by comparing the datasets

A and B, the quality and the dimensions of the dataset seems to have a much bigger

impact on the results than whether we apply hierarchical or flat classification.

Another interesting fact in the results from the hierarchical classification is that

the accuracies vary considerably with the hierarchy type used. For instance, when

classifying POIs with 6-digit NAICS codes, we can see that using a two-level hierarchy

Chapter 4. Results 51

Flat classification Hierarchical classification
Algorithm Accuracy Level1 acc. Level2 acc.
ID3 82.091 90.659 82.100
J48 81.831 90.173 81.484
RandomForest 82.436 90.959 82.477
RandomTree 81.818 90.509 81.654
JRip 78.495 85.806 76.398
IB1 76.826 87.637 76.826
IBk 82.553 91.080 82.551
K* 82.522 90.305 81.661
BayesNet 67.877 89.059 69.336
NaiveBayes 56.052 88.002 59.885

Table 5.10: Comparison between the results for dataset B using flat classification
(6-digit NAICS) and hierarchical classification with 2 levels (NAICS 2 and 6)

Flat classification Hierarchical classification
Algorithm Accuracy Level1 acc. Level2 acc. Level3 acc.
ID3 82.091 90.659 85.620 82.111
J48 81.831 90.172 84.901 81.341
RandomForest 82.436 90.959 85.969 82.398
RandomTree 81.818 90.509 85.315 81.694
JRip 78.495 85.806 80.440 76.889
IB1 76.826 87.637 81.126 76.826
IBk 82.553 91.080 86.097 82.539
K* 82.522 90.305 85.244 81.486
BayesNet 67.877 - - -
NaiveBayes 56.052 - - -

Table 5.11: Comparison between the results for dataset B using flat classification
(6-digit NAICS) and hierarchical classification with 3 levels (NAICS 2, 4 and 6)

the RandomForest algorithm improved over the flat classification, while using a three-

level hierarchy it actually became worse (although the differences in accuracy are small).

5.5 POI generation

Since we didn’t perform validation of the POI generation approach, for reasons we

already explained before, in this section we present and discuss a few case studies of

some generated places of interest.

Figures 5.12 to 5.16 show some of the identified places of interest using the DBScan

clustering algorithm and our similarity based TF-IDF algorithm. By analyzing the

figures presented we can have an idea of the quality of the approaches developed and

identify some weaknesses.

Chapter 4. Results 52

Figure 5.12: Screenshot 1 of places of interest identified by our POI generation ap-
proach

Figure 5.12 shows a perfect example of well identified place of interest. If the user

goes to google maps, for instance, and searches for the “Boston Museum of Science” she

can see that it is in fact in the place identified by the marker in the figure. In other

words, the centroid of the cluster corresponds exactly were the POI is, and the name

identified using our TF-IDF algorithm over the Flickr tags unambiguously identifies the

place.

Figure 5.13 depicts a weakness of our approach, which is events. Events typically

occur recurrently in the same place, and also usually generate lots of photos that at-

tendees upload to Flickr. Therefore it is very common to find lots of pictures of events

in Flickr. Since these events are often restricted to a small area, the clustering algo-

rithm will generate a cluster for them, and since the tags associated with it appear very

frequently in that cluster and very infrequently elsewhere, the TF-IDF algorithm will

attribute a high score to those tags. A possible solution to overcome this problem would

be to make an analysis of the photos over time. If the photos in a cluster are all from

a single short time period, or if the photos appear to have a ciclic pattern over time

(monthly or yearly, for instance), then maybe we should reconsider the TF-IDF score

that we assign to the tags associated with those photos.

Figure 5.14 shows another correctly identified place of interest which is the “Mas-

sachusetts General Hospital”. This screenshot is important to understand that a place

can be referred by different names. In this case, the “Massachusetts General Hospital”

Chapter 4. Results 53

Figure 5.13: Screenshot 2 of places of interest identified by our POI generation ap-
proach

Figure 5.14: Screenshot 3 of places of interest identified by our POI generation ap-
proach

appears referred to as “mgh”, “mass general hospital” and “massgeneral”. This repre-

sents another major issue in naming clusters. The fact that we use the similarity-based

TF-IDF approach helps us deal with some of these issues, but even that solution is

incapable of determining that “mgh” and “mass general hospital” are tags that refer to

the same thing.

Chapter 4. Results 54

Figure 5.15: Screenshot 4 of places of interest identified by our POI generation ap-
proach

Figure 5.15 shows another bad case. In this particular case, the cluster includes many

different places of interest and therefore the top-5 tags associated with it do not uniquely

identify a single place. This raises other problems which are cluster size and clustering

parameters. These problems will be further discussed later in this section.

Figure 5.16: Screenshot 5 of places of interest identified by our POI generation ap-
proach

Chapter 4. Results 55

Finally, figure 5.16 shows a example where the cluster centroid corresponds well to

the place it represents (“Boston Celtics Stadium”), however the top-5 tags are not good

enough to unambiguously represent it, specially for someone who is not familiarized with

the city of Boston.

An important result that we observed, however it was somehow expected, was the

enormous impact that the clustering parameters, and hence the cluster size, have on

the results. Not to mention, the problem of identifying which is the best clustering

algorithm. Intuitively, one would thing that a density-based clustering method would

be more suited for this kind of task. However, choosing the correct parameters can be

very difficult for this type of clustering, and therefore, other types of clustering methods

like K-means are not such bad options.

Figures 5.17 and 5.18 show the different patterns of the generated clusters using K-

means and DBScan respectively. As we can see in these figures, the distributions of the

generated clusters in space are a lot different, which once again highlights the impact of

the clustering algorithm used.

Figure 5.17: Screenshot of the generated clusters using K-means (k=100)

Figure 5.19 shows the clusters obtained using DBScan with the following parameters:

eps=0.005, minPts=50. By comparing this figure with figure 5.18 we can see that a minor

change in parameters of the clustering algorithm (eps=0.005 instead of 0.001) can have

a huge impact on the results. The impact of these parameters in the results is also an

important factor that complicates the validation of this approach.

Chapter 4. Results 56

Figure 5.18: Screenshot of the generated clusters using DBScan (eps=0.001,
minPts=50)

Figure 5.19: Screenshot of the generated clusters using DBScan (eps=0.005,
minPts=50)

By making an overall analysis, the results we obtained are in fact good (although we

showed some bad examples here). If the reader wants to analyze them personally, the

results can be seen at the following web address: http://www.greenhomes.dei.uc.pt/

Maps/index.html. In this webpage you can choose between the two different clustering

algorithms used and change some of the clustering parameters. Besides that, you can

http://www.greenhomes.dei.uc.pt/Maps/index.html
http://www.greenhomes.dei.uc.pt/Maps/index.html

Chapter 4. Results 57

also choose between the results of our similarity-based TF-IDF and standard TF-IDF

(the similarity-based TF-IDF is mentioned in the webpage as the “v2”).

Chapter 6

Conclusion

We have presented a multi-threaded application that allows the automated extraction of

Points of Interest (POI) for different areas in the world and from some of the thousands

of directories available throughout the Internet such as Yahoo, Yellow Pages, Manta,

CitySearch, etc. This application allowed us to collect a total of 981956 POIs, mainly

for the areas of Boston, New York, San Francisco and Lisbon. Using this wealthy

information we developed a POI Matching algorithm that allows us to determine similar

POIs among different sources with a precision of 98%, hence reducing the amount of

redundant information in our database and collecting as much information as possible

about a POI in a single database entry. We also made a few simple analyses over the

collected POI data mostly for the Boston Metropolitan Area.

Based on the results from the POI Matching algorithm, we proposed three classifica-

tion methods in order to classify POIs from their source taxonomy to a more convenient

one, particularly to the North American Industry Classification System (NAICS). These

methods are based on different approaches using Ontology Matching (see Section 3.3.1),

WordNet (see Section 3.3.2) and Machine Learning algorithms (see Section 3.3.3). Using

Machine Learning algorithms we experimented different solutions:

• flat and hierarchical classification schemes

• with and without semantic annotations

• with training sets with different sizes and from different sources (namely D&B and

InfoUSA)

Based on the obtained results we can conclude that the Machine Learning approaches

are the ones that provide better accuracies. Among the different algorithms tested it

is hard to name one that over-performs all the others, however we can say with good

58

Chapter 6. Conclusion 59

confidence that the instance-based learners (lazy), like the k-nearest neighbor (IBk), and

the tree-based learners, like RandomForests and ID3, are the ones more suited for this

particular classification task.

Regarding our experiments with hierarchical classification schemes and with semantic

annotations we got some improvements in some cases, however the results were not good

enough to make strong conclusions about their quality over the base approach (flat and

without semantics). As opposed to this, the results using NAICS codes from InfoUSA

(dataset B) proved that the dimension and the quality of the training set has a major

impact on the accuracies of the classifiers.

In conclusion, we proved that is possible to classify POIs from web-based sources (in

our case Yahoo!) with 2-digit and 6-digit NAICS codes with accuracies of roughly 90%

and 82% respectively. These accuracies are more than acceptable for the application of

the classified POI data in Urban Planning studies like the one presented in appendix D.

In this study, the classified POIs were applied to the urban modeling task of employment

size and location disaggregation from Block Group level to Block level and the results

show encouraging quality. By using our approaches, the researches in the field of Urban

Planning can less dependent on proprietary POI databases that quickly become obsolete.

Finally, we presented an approach to infer places of interest based on geo-referenced

photos from the very popular photo sharing website Flickr. In this approach we use

a combination of clustering and TF-IDF, where the clustering algorithms are used to

identify clusters of photos in space and the TF-IDF rating is used to identify the top-5

tags associated with each cluster, which allow the user to identify the place.

We also presented a modified version of TF-IDF that can improve the scoring of

terms that can contain errors, misspells or have multiple ways of being spelled. In our

particular case, we saw some improvement of using this similarity-based TF-IDF over

standard TF-IDF. However we cannot make any strong conclusion about that because

we didn’t perform a proper validation. Instead, we presented some case studies that

demonstrated the strengths and the weaknesses of the approach.

Despite the good potential demonstrated by our POI generation approach (like the

many others presented in section 2.5), it is still too soon to migrate to fully automated

POI generation solutions. Therefore, for the next years, we will probably still rely on

user-contributed and proprietary POI databases, with particular focus on the former.

It is however clear that these kinds of areas will certainly be the focus of many research

works and will have many contributions in the future.

Chapter 7

Final thoughts on the research

In this chapter I discuss some aspects of my research during the last year.

The research work was not totally new for me, neither was the workgroup I was

part of. I started working with Professor Francisco Pereira two years ago, but during

the first year my work was only part-time and the focus of that work was different

from my current work. Therefore, by working full-time, this last year gave me a whole

new perspective on research, which I found to be very interesting and motivating. I

also had the opportunity to work closely with other researchers like Ana Alves (who

was also my co-supervisor during last year) and João Oliveirinha. I was part of the

AmILab workgroup which I consider to have a great working environment and a good

companionship.

Regarding the initial objectives of my research, I think they were all achieved. My

work was supposed to have two main components: POI Mining and POI Generation. It

ended up having a third one, POI Classification, which was not considered at first, but

we later realized its huge importance and we decided we should focus on that question

as well. The POI Classification work opened up a new collaboration opportunity with

researchers Shan Jiang and Professor Joshep Ferreira at the Massachusetts Institute of

Technology. This collaboration was great because not only I had the opportunity to

collaborate with researchers from a area different than informatics, but it also gave me

the pleasure of working with foreign researches from a world famous university.

Figure 7.1 shows a Gantt chart with the planning of research work. In this chart

green cells represent free time (i.e. the task took less time than expected) and red

cells represent time that was not supposed to be spent on that task (i.e. the task was

overdue). I tried to be as honest and accurate as possible when filling that chart.

60

Chapter 7. Final thoughts on the research 61

Figure 7.1: Gantt chart of planning of my research

As we can see in the Gantt chart, all tasks took more or less the expected time. We

can also see that I didn’t assigned specific time slots to the study of the state of the art.

I made this choice because this study took place during all the year in parallel with the

other tasks, even thought it was more intensive in certain times.

During last year, the following three papers were submitted to different conferences:

• Towards an activity-based approach for estimating travel destinations, Shan, J.,

Rodrigues, F., Alves, A., Pereira, F., Ferreira, J. - WCTR (Accepted)

• Automatic classification of Points-of-Interest for land-use analysis, Rodrigues, F.,

Pereira, F., Alves, A., Shan, J., Ferreira, J. - SIGSPATIAL (Submitted)

• Place in perspective: Extracting online information about Points of Interest, Alves,

A., Pereira, F., Rodrigues, F., Oliveirinha, J. - AmI (Submitted)

In conclusion, I think my research went well, fulfilled the objectives proposed and

was a very valuable experience for me.

Appendix A

Web Scraping techniques

There are many techniques to extract information from a webpage. This section de-

scribes the five most commonly used.

A.1 Human copy-paste

As odd as it may sound, copy-paste is considered an example of Web scraping by many

people. Although it is very easy to do, it takes a huge amount of time and patience,

making it almost impossible to use for large numbers of pages. Besides, if you’re hosting

a web service to serve as a wrapper and deliver the scraped information, you need to

make the extraction process automated. However, for a very small number of pages,

copy-paste works just fine.

Advantages of this technique

• You don’t need to have any programming skills.

• No time spent developing a scraper.

Disadvantages of this technique

• It is not scalable. It would be almost impossible to use for a large number of pages.

• It is a very monotonous, time consuming and boring technique.

62

Appendix A. Web Scraping techniques 63

A.2 String manipulation

This is probably the most used technique because it involves no needs for the programers

to learn about regular expressions or any other technique. This technique is also consid-

ered the most “ad-hoc” one. It consists in using a complex set of substring(), indexOf()

and split() method calls over the string object containing the HTML source code. Con-

sidering this, it is not hard to imagine the amount of tests you will have to make before

you get your scraper working.

Advantages of this technique

• You don’t need understand regular expressions.

• No need for any third-party library. You use only built-in functionalities of the

programming language.

• Easy to do. You don’t have to know a lot of programming.

Disadvantages of this technique

• Working with strings like this is very error-prone and takes a lot experiences until

you get the right result.

• The resulting code tends to be very messy.

• If the web page changes its structure, even only by a little bit, it is very likely

that your whole scraper will become unusable. You won’t be able to patch it up

because you probably won’t understand the code you wrote a few time ago.

A.3 Regular expressions

Regular expressions are a very, very powerful tool. When you mastered the use of them,

you will ask yourself why you have not learn them before. Regular expressions, or

“regexes” for short, are very useful when it comes to string manipulation. Take a look

at following example to understand the difference.

Imagine you need to validate e-mail addresses. The verbal directions for doing so

might be something along the lines of ”Make sure the e-mail address contains an at (@)

symbol.” You could probably handle this task with a single line of Java code:

Appendix A. Web Scraping techniques 64

If (email.indexOf("@") > 0) {

return true;

}

So far, so good. Suppose additional requirements creep in, though, as they invariably

do. Now you also need to make sure that all e-mail addresses end with the .org extension.

So you amend your code as follows:

If ((email.indexOf("@") > 0) && (email.endsWith(".org"))){

return true;

}

But the requirements continue to creep. You now need all e-mail addresses to be

of the form firstname lastname, so you use the StringTokenizer to tokenize the e-mail

address, extract the part before the @, look for the underscore () character, tokenize

the strings around that, and so on. Pretty soon, you have some convoluted code for

what should be a fairly straightforward operation. The use of regular expressions can

greatly simplify and condense this process. With regular expressions, you could write

the following:

String regex = "[A-Za-z]+_[A-Za-z]+@[A-Za-z]+\\.org";

if (email.matches(regex)) return true;

Advantages of this technique

• The scraper code will be smaller and much clearer (although the regular expressions

will probably need some explanatory information).

• Higher development speed.

• Regular expressions make the scraper much easier to patch/update when a change

is made in web page structure.

Disadvantages of this technique

• You will have to learn regular expressions and some developers find them hard to

use.

Appendix A. Web Scraping techniques 65

A.4 DOM

DOM (short for Document Object Model) is a cross-platform and language-independent

convention for representing and interacting with objects in HTML, XHTML and XML

documents. Aspects of the DOM (such as its ”Elements”) may be addressed and ma-

nipulated within the syntax of the programming language in use. The public interface

of a DOM are specified in its Application Programming Interface (API).

Using DOM you can load an entire web page to an object in memory, and then iterate

trough its element and navigate through their children, parents and siblings.

Advantages of this technique

• It is very easy to understand how the DOM works.

Disadvantages of this technique

• Your code will probably become very confusing and hard to understand.

• The web page needs to be very well formatted (which most of the times does not

happen).

• You will probably need to use some kind of third-party library for this (most of the

times the built-in DOM library is not very easy to use, and third-party libraries

often have increased functionality).

• Increased memory usage. The complete DOM tree needs to be loaded to memory

in the object-oriented paradigm.

A.5 XPath

XPath is used to navigate through elements and attributes in an XML document. XPath

is a major element in W3C’s XSLT standard - and XQuery and XPointer are both built

on XPath expressions.

Using XPath you can easily select any elements in HTML. For that you can use

a expressions like this: id(’divxpto’)/ul/li[2]/a. This expression will navigate to the

element with id=’divxpto’, then go to the “ul” child, then to second “li” element and

finally, it will get the “a” element.

Advantages of this technique

Appendix A. Web Scraping techniques 66

• The code is very easy to maintain, patch or update.

• Higher development speed.

• There are lots of great tools available to test your XPath expressions in web pages.

Disadvantages of this technique

• You will have to make updates very frequently to the XPath expressions.

• The web page needs to be very well formatted (which most of the times does not

happen).

• You will need to learn how to use XPath expressions.

• Depending on the programming language, you might need to use some kind of

third-party library for this.

• Increased memory usage. The complete DOM tree also needs to be loaded into

memory in the object-oriented paradigm.

Appendix B

The database

Figure B.1 depict the E-R model of our database.

Figure B.1: E-R model of the database

67

Appendix C

The REST Web service

This section describes the methods available through our REST Web service, along with

the parameters each one takes.

The Web service URI is:

http://greenhomes.dei.uc.pt:8080/POIsREST/resources/

The following list describes the resources that are available through our Web service

and the correspondent input parameters:

POIsREST/resources/pois

Provides a list of POIs inside a given circular area defined a center and a radius.

Input parameters:

• lat: latitude of the center of the circle.

• lng: longitude of the center of the circle.

• radius: radius of the circle.

• ne (optional): northeast coordinates of top-left corner of the map (for map

statistic information only).

• sw (optional): southwest coordinates of bottom-right corner of the map (for

map statistic information only).

• perspective: perspective were retreiving POIs from; can be: openweb, up-

coming, boston globe, wiki or all.

• output: the format of the response; can be either JSON or XML.

Example:

http://greenhomes.dei.uc.pt:8080/POIsREST/resources/pois?

68

Appendix C. The REST Web service 69

lat=42.35854391749705&lng=-71.06042861938477&radius=0.002&

perspective=all&ne=(42.42269621215634, -70.95588684082031)&

sw=(42.29584977392906, -71.18247985839844)&output=json

POIsREST/resources/semantics

Provides details and semantic information about a given POI. Input parameters:

• id: the ID of the POI.

• semantics: whether of not the service should return semantic information

about the POI along with the details of it; can be either true or false.

• output: the format of the response; can be either JSON or XML.

Example:

http://greenhomes.dei.uc.pt:8080/POIsREST/resources/semantics?

id=yahoo 42.360618 -71.060838 10152836&semantics=true&output=json

POIsREST/resources/search

Allows the search of POIs by ID, name or address. Only one of the search param-

eters is required. If more than one search parameter is specified a AND operation

is performed. Input parameters:

• id: the ID of the POI.

• name: the name of the POI.

• address: the address of the POI.

• output: the format of the response; can be either JSON or XML.

Example:

http://greenhomes.dei.uc.pt:8080/POIsREST/resources/search?

name=apple&output=json

POIsREST/resources/counts

Provides statistic information about the number of POIs in the database. Input

parameters:

• output: the format of the response; can be either JSON or XML.

Example:

http://greenhomes.dei.uc.pt:8080/POIsREST/resources/counts?

output=json

POIsREST/resources/event

Provides details about a given event. Events are associated with some POIs. Input

parameters:

Appendix C. The REST Web service 70

• id: the ID of the event.

• output: the format of the response; can be either JSON or XML.

Example:

http://greenhomes.dei.uc.pt:8080/POIsREST/resources/event?

id=89404555&output=json

Appendix D

An application in Urban Planning

In this appendix we describe a practical application of Yahoo! POIs classified to NAICS

using a non-hierarchical approach with the k-nearest neighbor classifier (IBk) without

semantic annotations (see section 3.3.3.3 for more details).

In the field of Urban Planning, urban simulation models have evolved significantly in

the past several decades. For instance, the travel demand modeling approach has been in

the transition from the traditional Four-Step Model (FSM) to the Activity-Based Model

(ABM) [38]. Consequently, requirements for disaggregated data increase greatly, ranging

from population data, employment data, to travel survey data. The employment data

(on the travel destination side) is usually obtained from proprietary sources, which adds

another layer of barriers to widely applying Activity-Based Modeling approach, let alone

the expensive travel-survey data acquisition. In order to study this issue, researchers

are trying to develop new methods of estimating disaggregated employment size and

location by category.

In our case, we intend to develop a set of new methods and demonstrate their ap-

plications for estimating activities, incorporating them into travel demand and urban

simulation models. This will be beneficial for cities that lack detailed survey data for

building Activity-Based Models but wish to test the sensitivity of travel behavior to pol-

icy changes such as Intelligent Transportation Systems (ITS) implementations that are

likely to alter activity patterns. An important step to achieve these goals is to obtain a

disaggregated employment distribution by POIs of an area. For the case of Cambridge,

MA, we have official data at the Block Group (BG) level (obtained from the U.S. Cen-

sus Transportation Planning Package 2000), which essentially describes the total size of

employees by economic sector at that spacial resolution. We need to distribute these

totals into Block or Parcel level.

71

Appendix D. An application in Urban Planning 72

For demonstration purposes we only use POIs from the “Retail Trade” sector of the

NAICS taxonomy, i.e. categories whose code starts by 44 or 45. Figures D.1 and D.2

show the aggregated retail employment density at the Block Group level and distribution

of our POI data from Yahoo! at the Census Block level for Cambridge, respectively.

Figure D.1: Aggregated retail employment density at the Block Group level (pl/sq
km= employed people per square kilometer).

Figure D.2: Cambridge retail POI distributions from Yahoo!

By using the business establishment survey data (from InfoUSA, 2007) which is

believed to be close to the population, we are able to obtain a benchmark estimate of

employment size by category at the Census Block level for the study areas. This will

function as a ground truth to test our algorithm. Notice however that the dates for

each of the databases are quite distinct (2000 for Census, 2007 for InfoUSA and 2010

for Yahoo!) therefore some error is expected to happen.

We employ local maximum likelihood estimation (MLE) method as described below

to derive the disaggregated destination estimation at Block level.

1. We calculate the total number of POIs (destinations) by category c in each Block

b.

Appendix D. An application in Urban Planning 73

2. We assume that the employment size at destination d in Block Group g of category

c is proportional to some function f of its associated block area ad,c,g, which

means the effective area of the destination d in Block Group g of category c.

The form of function f will be explored based on the empirical data, and we

also allow the possibility that f(ad,c,g) = ad,c,g which is the natural benchmark

case. Mathematically, assume that for employment category c, there are nc,g

destinations at Block Group g. For d = 1, 2, . . . , nc,g, let random variable ed,c,g be

the employment size of category c at destination d in Block Group g.

3. We assume that ed,c,g(d = 1, 2, . . . , nc,g) are i.i.d.(f(ad,c,g) ·αc,g, σ2
c,g), where αc,g is

the employment size of category c per unit of effective area at Block Group g; αc,g

and σc,g are positive constants independent of d. E(ed,c,g) = f(ad,c,g) · αc,g and

V ar(ed,c,g) = σ2
c,g. We then estimate αc,g by employing the maximum likelihood

method locally at Block Group g for employment category c. Thus we obtain an

estimate of employment size ed,c,g of category c at destination d in Block Group g.

4. Finally, we sum up the employment size in category c in Census Block b in Census

Block Group g.

By employing the same local maximum likelihood method described above and using

the business establishment survey data (e.g., ESRI Business Analysis package) which

is believed to be close to the population POIs, we obtain a benchmark estimate of

employment size by category at the Block level for the study area, E∗
b,c,g. By using the

derived POI information (obtained from the machine learning algorithm), we obtain an

estimate of employment size by category c at Block b for the study area, Êb,c,g.

Then the mean squared error (MSE), weighted mean squared error (WMSE), and

the relative weighted mean squared error (RWMSE) can be calculated to evaluate the

goodness of fit of the model (see Equations 1, 2, 3, and 4).

MSE(Êb,c,g, E∗
b,c,g) =

X

b,c,g

(Êb,c,g − E∗
b,c,g)2 (D.1)

WMSE(Êb,c,g, E∗
b,c,g) =

X

b,c,g

wb,c,g(Êb,c,g − E∗
b,c,g)2 (D.2)

RWMSE(Êb,c,g, E∗
b,c,g) =

P
b,c,g wb,c,g(Êb,c,g − E∗

b,c,g)2
P

b,c,g wb,c,g(Ēb,c,g − E∗
b,c,g)2

(D.3)

Ēb,c,g =
w�

b,g

P
q E∗

q,c,gP
q w�

q,g
(D.4)

In Equation 2, when we take the weight wb,c,g = 1 for any subscripts b, c, and g, the

corresponding WMSE becomes MSE. In Equation 4, w�
b,g = area of Block b in Block

Group g, and Ēb,c,g is the estimated employment size in Block b of category c, using

Appendix D. An application in Urban Planning 74

the traditional disaggregation approach, assuming that the employment is uniformly

distributed across blocks in each Block Group g.

If RWMSE is less than 1, it means that the quality of the derived POIs is reliable,

so is the new method; the smaller the RWMSE, the more accurate is the method. If

WMSE or RWMSE equals to 0, it means that the derived POIs from the Internet match

exactly with the trusted proprietary POIs (treated as the population POIs). However,

if RWMSE is greater than 1, it means that the derived POIs cannot well reflect the

distribution of the population POIs.

Figures D.3 and D.4 show the estimation results of the disaggregated retail employ-

ment density at Block level in Cambridge, MA, by using POIs from infoUSA and Yahoo!

respectively. By comparing the estimation results, we find that the disaggregated em-

ployment estimations by using the POIs captured from the Internet using Yahoo! and

those obtained from the proprietary source (infoUSA 2007) are very close.

Figure D.3: Disaggregated retail employment densities at the Block level, in Cam-
bridge, MA, by using POIs from infoUSA

Figure D.4: Disaggregated retail employment densities at the Block level, in Cam-
bridge, MA, by using POIs from Yahoo!

Appendix D. An application in Urban Planning 75

Employing Equation 3, the disaggregated employment estimation at the Block level

using Yahoo! POI gives RMSE = 0.312. The RMSE is significantly smaller than 1,

which means that using the extracted Yahoo! online POIs to estimate the disaggregated

employment sizes at the Block level has reduced the mean squared error by around 69%

compared to the traditional average disaggregation approach.

Appendix E

North American Industry

Classification System (NAICS)

This appendix shows further details about the North American Industry Classification

System (NAICS) categories.

Figure E.1 shows the NAICS industry sectors, and figures E.2 and E.3 shows the

most common six-digit NAICS codes.

Figure E.1: NAICS Industry Sectors

76

Appendix E. North American Industry Classification System (NAICS) 77

Figure E.2: NAICS codes

Appendix E. North American Industry Classification System (NAICS) 78

Figure E.3: NAICS codes

Bibliography

[1] City of austin: Neighborhood planning: Introduction to land use. February 2010.

www.ci.austin.tx.us/zoning/downloads/land use guide1.pdf.

[2] D. Rhind and R. Hudson. Land use. Methuen & Co, New York, USA, 1980.

[3] R. P. Haining. Spatial data analysis in the social and environmental sciences. Cam-

bridge University Press, Cambridge, 1990.

[4] L. Anselin and R. Florax. New directions in spatial econometrics. Springer, New

York, 1995.

[5] E. Currid and J. Connolly. Patterns of knowledge: The geography of advanced

services and the case of art and culture. Annals of the Association of American

Geographers, 98:414–434, 2008.

[6] P. Sambidi and W. Harrison. Spatial clustering of the u.s. biotech industry. 2006 An-

nual meeting, July 23-26, Long Beach, CA 21360, American Agricultural Economics

Association (New Name 2008: Agricultural and Applied Economics Association),

2006. URL http://ideas.repec.org/p/ags/aaea06/21360.html.

[7] G. Arbia. Modelling the geography of economic activities on a continuous space.

Papers in Regional Science, 80(4):411–424, 2001. URL http://ideas.repec.org/

a/spr/presci/v80y2001i4p411-424.html.

[8] Owl web ontology language: Overview. February 2010.

http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.2.

[9] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. The

Knowledge Engineering Review 18, pages 1–31, 2003.

[10] Orsi G. Curino, C. and L Tanca. X-som: Ontology mapping and inconsistency

resolution. 4th European Semantic Web Conference, Tyrol, Austria, 2007.

[11] H.-H. Do and E Rahm. Matching large schemas: Approaches and evaluation. In-

formation Systems, 32:857–885, 2007.

79

http://ideas.repec.org/p/ags/aaea06/21360.html
http://ideas.repec.org/a/spr/presci/v80y2001i4p411-424.html
http://ideas.repec.org/a/spr/presci/v80y2001i4p411-424.html

Bibliography 80

[12] Mafra-toolkit, February 2010. http://mafra-toolkit.sourceforge.net.

[13] N.F. Noy and M.A. Musen. Prompt: Algorithm and tool for automated ontology

merging and alignment. Seventeenth National Conference on Artificial Intelligence

(AAAI-2000), Austin, TX, 2000.

[14] P. Domingos A. Doan, J. Madhavan and A. Halevy. Learning to map between

ontologies on the semantic web. In The Eleventh International WWW Conference,

Hawaii, US, 2002.

[15] D. T. Lindgren. Land-use Planning and Remote Sensing. Martinus-Nijhoff, Boston,

MA, 1985.

[16] L. O. Fresco. The Future of the Land – Mobilizing and Integrating Knowledge for

Land-use Options. John Wiley & Sons, Chichester, 1997.

[17] J. B. Campbell. Mapping the Land – Aerial Imagery for Land use Information.

Association of American Geographers, Washington, D.C., 1983.

[18] P. Danoedoro. Extracting land-use information related to socio-economic function

from quickbird imagery: A case study of semarang area, indonesia. Map Asia 2006,

2006.

[19] D. Li, K. Di, and D. Li. Land use classification of remote sensing image with gis

data based on spatial data mining techniques. Geo-Spatial Information Science, 3:

30–35, 2000.

[20] M. Santos and A. Moreira. Automatic classification of location contexts with deci-

sion trees. CSMU-2006 : Proceedings of the Conference on Mobile and Ubiquitous

Systems, Guimares, Portugal, 2006.

[21] T. Griffin, T. Huang, and R. Halverson. Computerized trip classification of gps

data. Proceedings of 3rd International Conference on Cybernetics and Information

Technologies, Systems and Applications (CITSA 2006), 2006.

[22] J. Pierre. On the automated classification of web sites. Linkoping Electronic Articles

in Computer and Information Science, 6, 2001.

[23] Naaman M. Nair R. Yang J. Ahern, S. World explorer: Visualizing aggregate data

from unstructured text in geo-referenced collections. International Conference on

Digital Libraries, Vancouver, BC, Canada, 2007.

[24] Smart P. Twaroch, F. and C. Jones. Mining the web to detect place names. In

Workshop On Geographic Information Retrieval, Napa Valley, California, USA,

2008.

Bibliography 81

[25] L. Mummidi and Krumm J. Discovering points of interest from users map annota-

tions. GeoJournal, Volume 72, Numbers 3-4, 72:215–227, 2008.

[26] Naaman M. Tassa T. Jaffe, A. and M. Davis. Generating summaries and visualiza-

tion for large collections of geo-referenced photographs. International Multimedia

Conference, Santa Barbara, California, USA, pages 89–98.

[27] Mexico Proceedings of the IJCAI-2003 Workshop on Information Integration on the

Web (IIWeb-03), Acapulco. A comparison of string distance metrics for name-

matching tasks. Communications Of The ACM, 2003.

[28] North american industry classification system (naics): Introduction. February 2010.

http://www.census.gov/eos/www/naics/.

[29] Naics association: Frequently asked questions. February 2010.

http://www.naics.com/faq.htm.

[30] Dun & Bradstreet. D & b website, February 2010. http://www.dnb.com/.

[31] W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string distance metrics

for name-matching tasks. Proceedings of the IJCAI-2003 Workshop on Information

Integration on the Web (IIWeb-03), Acapulco, Mexico, 2003.

[32] J. Gurland and R.C. Tripathi. A simple approximation for unbiased estimation of

the standard deviation. American Statistician, 25(4):30?32, 1971.

[33] Geoffrey Holmes Bernhard Pfahringer Peter Reutemann Ian H. Witten Mark Hall,

Eibe Frank. The weka data mining software: An update. SIGKDD Explorations,

11, 2009.

[34] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools and

techniques, 2nd Edition. Morgan Kaufmann, 2005.

[35] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[36] A. Alves, F. C. Pereira, A. Biderman, and C. Ratti. Place enrichment by mining

the web. In Proceedings of the Third European Conference on Ambient Intelligence,

2009.

[37] George A. Miller. Wordnet: A lexical database for english. Communications Of

The ACM, 38:39–41, 1995.

[38] M.G. McNally and C.R. Rindt. The Activity-Based Approach. Handbook of Trans-

portation Modeling. Elsevier, Amsterdam, London, 2008.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 State of the art
	2.1 POI extraction
	2.2 Land Use and Spatial Analysis
	2.3 Ontology matching
	2.4 Machine Learning applications in Space Analysis
	2.5 POI generation

	3 Approaches
	3.1 POI extraction
	3.1.1 Challenges
	3.1.2 Software architecture

	3.2 POI matching
	3.3 POI classification
	3.3.1 Ontology Matching approach
	3.3.2 WordNet approach
	3.3.3 Machine Learning approaches
	3.3.3.1 POI Sources
	3.3.3.2 POI Matching and Data Preparation
	3.3.3.3 Flat Classification
	3.3.3.4 Extension with Semantic Annotations
	3.3.3.5 Hierarchical Classification

	3.4 POI generation

	4 Validation
	4.1 POI matching
	4.2 POI classification
	4.3 POI generation

	5 Results
	5.1 POI extraction
	5.2 POI analysis
	5.3 POI matching
	5.4 POI classification
	5.5 POI generation

	6 Conclusion
	7 Final thoughts on the research
	A Web Scraping techniques
	A.1 Human copy-paste
	A.2 String manipulation
	A.3 Regular expressions
	A.4 DOM
	A.5 XPath

	B The database
	C The REST Web service
	D An application in Urban Planning
	E North American Industry Classification System (NAICS)
	Bibliography

