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ABSTRACT 
In this work, we analyze taxi-GPS traces collected in 
Lisbon, Portugal. We perform an exploratory analysis to 
visualize the spatiotemporal variation of taxi services; 
explore the relationships between pick-up and drop-off 
locations; and analyze the behavior in downtime (between 
the previous drop-off and the following pick-up). We also 
carry out the analysis of predictability of taxi trips for the 
next pick-up area type given history of taxi flow in time and 
space.  

Author Keywords 
Urban mobility, spatiotemporal analysis, taxi-GPS traces, 
naïve Bayesian classifier. 

ACM Classification Keywords 
I5.2. Patter Recognition: Pattern analysis.  

General Terms 
Algorithms.  

INTRODUCTION 
In the last decades, urban areas are struggling with their 
growth in population and size. That demands for more 
resources specially energy and transportation. To maintain a 
constant flow of people and vehicles, we need to reduce the 
use of individual means of transport (e.g. car), and stimulate 
the use of public transportation modes (e.g. bus, metro, 
train). However, we need to improve the public 
transportation system in order to meet citizens’ needs. A 
more efficient public transportation system can lead to a 
reduction of traffic congestions and consequent reduction of 
energy consumption. However, to optimize the public 
transportation network it is essential to understand what 

drives the common citizen, what their needs are. 

At same time, we are experiencing new developments in 
ubiquitous computing technologies. Nowadays we are able 
to access to a wider variety of devices, with a growing 
number of features and computational capabilities.  This 
technological diversity provides us the tools to sense urban 
spaces. We can either take a snapshot of all environment or 
follow a single vehicle or individual.  

Retrieving data from the traditional public transportation 
(e.g. bus, train, metro) can provide a relevant database of 
samples and general passengers’ movement. However, it 
does not provide the exact origin and destination for each 
passenger, since these transportation modes relies on pre-
designated stops and paths. The taxi service can be a way to 
retrieve large dataset of information with a higher precision 
when we focus the origin and destination of each trip. It can 
pick-up the passengers right where they are standing, and 
drop-off them precisely in the desirable destination, without 
being bounded to a pre-determined path. The process of 
data collecting is transparent and non-intrusive to the 
passenger. 

Our on-going work is focused on the analysis of taxi-GPS 
traces acquired in the city of Lisbon, Portugal, to better 
understand urban mobility. The contribution of this work 
lies on the following two aspects: spatiotemporal analysis 
and study of predictability of taxi trips. For the former, we 
analyze taxi traces to identify relevant pick-up and drop-off 
locations in time and space; study the relationships between 
pick-up and drop-off locations and characterize the scenario 
between taxi services (i.e. what happens between the latest 
drop-off and next pick-up). For the latter, we explore the 
possibility of predicting the next pick-up area type given 
the previous drop-off hour of the day, day of the week, 
weather condition, and area type. 

The paper is structured as follows: section 2 introduces the 
related work on urban mobility using taxi traces. Section 3 
describes the source dataset, along with the environment 
under study. Section 4 presents a spatiotemporal study, 
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describes how taxi-GPS traces are distributed in time and 
space, and the relations between pick-ups and drop-offs 
locations. Section 5 analyzes the predictability of taxi trips 
for the next pick-up area type given history of taxi flow in 
time and space based on naïve Bayesian classifier. The final 
section concludes and discusses some future research to 
improve the current work. 

RELATED WORK 
The study of taxi-GPS traces to understand and improve 
urban mobility is a quite active research field. In this 
section we present some of the related work and their main 
contributions. 

Liu et al. [1] classify taxi drivers into the top and standard 
drivers according to their income. Based on 3,000 taxi 
drivers, they observe that top drivers have the special 
proportion of operation zones, with an optimal balance 
between taxi travel demand and fluid traffic conditions, 
while ordinary drivers operate in fixed spots with few 
variations.  

Ziebart et al. [2] present a decision modeling framework for 
probabilistic reasoning from observed context-sensitive 
actions. Based on 25 taxi drivers, the model is able to make 
decisions regarding intersections, route, and destination 
prediction given partially traveled routes.  

Yuan et al. [3] and Zheng et al. [4] propose the T-Drive 
system that relies on an historical GPS dataset generated by 
over 33,000 taxis in a period of three months, to present the 
algorithm to compute the fastest path for a given destination 
and departure time. Zheng et al. also describe a three-layer 
architecture with the notion of landmark graph to model the 
knowledge of taxi drivers.  

Chang et al. [5] propose a four-step approach for mining 
historical data in order to predict demand distributions 
considering time, weather, and taxi location. They show 
that different clustering methods have different 
performances on distinct data distributions.  

Phithakkitnukoon et al. [6] present a model to predict the 
number of vacant taxis for a given area of the city using a 
naïve Bayesian classier with developed error-based learning 
algorithm and mechanism for detecting adequacy of 
historical data. With 150 taxi drivers, they achieve an 
overall error rate of less than one taxi per 1x1 km2 area.  

Qi et al. [8] investigates the relationship between regional 
pick-up and drop-off characteristics of taxi passengers and 
the social function of city regions. They develop a simple 
classification method to recognize regions’ social function 
which can be break in Scenic Spots, Entertainment Districts 
and Train/Coach Stations.  

There are also studies performed by Yang et al. [9] and 
Wong et al. [10] in order to improve the taxi service in 
congestion scenarios. 

DATASET AND ENVIRONMENT DESCRIPTION 
In this section, we will describe the source dataset and 
characterize the environment under study. 

For the present study we use a database with more than 10 
million taxi-GPS samples from August through December 
in 2009, collected in Lisbon, Portugal by GeoTaxi [11]. For 
study purposes, only pick-up and drop-off locations and 
timestamps are considered, which correspond to 177,169 
distinct trips. A data cleaning process was applied, 
removing trips with less than 200m and more than 30km 
(the realistic longest trips from one side of the city to the 
other could be around 22km). Data was collected from 217 
distinct taxis, which account for nearly 15% of taxis in 
Lisbon area. 

The area of study encompasses the Lisbon council (Figure 
1) that consists of 53 parishes, an area of around 110 km2, 
and a population of 800,000 habitants. The city downtown 
is the central area, which includes the oldest and smallest 
parishes with greatest population density (red), touristic, 
historic and commercial areas, and the interface for several 
public transportation services (bus, metro, train and ferry). 
Moving from the city center there are larger area parishes 
with lower population density (yellow), which are 
characterized by residential areas surrounding business 
areas. Major infrastructures (e.g. airport, industrial 
facilities) are located in the city’s periphery.  

For the analysis, we model the Lisbon map with grid with 
cells of 0.5x0.5 km2.  

  

Figure 1. Lisbon council and population density (A, City 
downtown; B, Airport; C, Train Station; D, Train St ation; E, 
Ferry dock; F, City center; G, Univ. Campus; H, Commercial 

Area; I, Residential). 

Weather conditions for the period under study were 
retrieved from Weather Underground [11] and grouped in 
three states (sunny, cloudy and rainy). 

Sapo Maps [13] provided a collection of 10,954 Points Of 
Interest (POIs), grouped into eight categories1  (Services, 
                                                           
1 The classification was performed by the data provider. 



 

Recreation, Education, Shopping, Police, Health facilities, 
Transportation and Accommodation, represented in figure 
2), to characterize the area type. Education facilities (e.g. 
kindergarten, high school, university, etc.), Recreation (e.g. 
bar, restaurant, etc.) and Services (e.g. bank, etc.) are the 
dominant POI categories (which account for over 70%). 

 

 

Figure 2. POIs categories distribution. 

In figure 3 we can observe the raw map of POIs and the 
underlying density distribution. As expected the POIs are 
mainly distributed in areas with a higher population density 
or commercial. The main cluster is located in city center 
and downtown. 

 

Figure 3. POI’s raw map and density distribution. 

Figure 4 aggregates the POI distribution in order to identify 
the predominant POI on each cell grid, according to figure 
2 classification. On marginal street of Tagus river 
recreation is the most predominant POI. City center is 
characterized by services while education is predominant 
on the remaining areas.  

EXPLORATORY ANALYSIS 
In this section we perform an exploratory analysis to 
identify emerging patterns and obtain a better 
understanding of the variables that model the system. We 
explore the following aspects: spatiotemporal analysis, 
spatial relationships between pick-up and drop-off locations 

and analysis of the movement of taxis between services (i.e. 
from the previous drop-off to the following pick-up). 

 

 

Figure 4. Predominant POI category on each location (colors 
correspond to classification performed in figure 2). 

Spatial and Temporal distribution 
Taxi demands vary in time and space, according to the 
citizens need. Figure 5 presents the taxi service variation 
according to the hours of the day and days of week.  

 

 

Figure 5. Taxi service variation according to the hours of day 
(top) and days of week (bottom) 

As expected, the taxi service variation follows the business 
hours. It gradually increases in from 7 a.m., reaches the 
maximum between 11 a.m. and 1 p.m., and slowly drops 
down in the afternoon. By the same token, there are more 



 

taxi services in working days than in weekends. In both 
cases the maximum is reached in the beginning of the 
periods (11.am. to 1 p.m. for hours and Monday for days). 

Figure 6 presents the taxi service distribution in Lisbon, 
according to the pick-ups and drop-offs, where some major 
locations are identified ,such as city downtown (A), airport 
(B), train stations (C, D) and ferry dock (E). 

  

Pick-up locations. 

 

Drop-off locations. 

Figure 6. Taxi pick-up (top) and drop-off locations (bottom) 
density (A, City downtown; B, Airport; C, Train Sta tion; D, 

Train Station; E, Ferry dock; F, City center; G, Univ. 
Campus; H, Commercial Area; I, Residential). 

In figure 7 we can visualize how the pick-up and drop-off 
location areas relate, where the thickness of the line 
represents the intensity between every two possible 
locations. Strong relations can be observed in links B-C, D-
E, D-A, A-F, and F-B. All those locations are characterized 
by some public transportation modality (airport, train, ferry, 
bus). B is the access to the airport, C and D are trains 
stations, E is a ferry dock, A and F are bus stops zones. It is 
important to stress out that, although there is a subway 
service in Lisbon, do not exists a direct subway line 
connection the aforementioned locations. 

From this observation, we hypothesize that the taxi service 
is often used as a bridge between public transportation 
modalities. It is also important to point out that the 
locations A, C and F (some of the most frequent pick-up or 
drop-off locations) give access to services and commercial 
areas. 

 

Figure 7. How strongly connected locations are, according to 
taxi services (A, City downtown; B, Airport; C, Train Station; 

D, Train Station; E, Ferry dock; F, City center; G, Univ. 
Campus; H, Commercial Area; I, Residential). 

In figure 8 we can observe the relation between pick-ups 
and drop-off locations, considering only the most frequent 
destination for each location. By filtering the remaining 
destinations, we can visualize the predominant relations 
between locations, and their strength. Become visible the 
links B-C (airport and train station); A-D (downtown and 
train station), D-E (train station and ferry dock) and A-F 
(downtown and city center). Once again, a bridge between 
transportation modalities is observable. 

 

Figure 8. Relation between pick-ups and drop-off considering 
only the most frequent destination for each location. 

To better understand the patterns from the taxi services we 
plot the taxi trips according to the distance, duration and 
income in figure 9. 



 

[7] fitted the trips distance with a gamma distribution  (with 
α = 2.7 and β = 1.2). This observation does not agree with 
the results from different authors, where an exponential fit 
was observed using data collected in Florence urban area, 
Italy [14]. However, [7] demonstrated that exponential 
distribution is a special case of gamma distribution, and if 
the first step of the dataset is removed the trips distance 
could be fitted with an exponential distribution (with λ = 
0.26). By the same token, if the first step of trips duration is 
removed, the trips duration can be fit with an exponential 
distribution. For trips income2  it is not clear the fitted 
distribution. [1], using data collected in Shenzhen, South 
China observed a normal distribution for trips income. 

 

 

 

Figure 9. Taxi service distribution according to distance (top), 
duration (middle) and income (bottom). 

The difference in results for other authors can be due the 
following aspects: a) distinct dataset (e.g. [1] worked with 

                                                           
2 The income was calculated from data using the ANTRAL 
standard formulation http://www.antral.pt/simulador.asp. 
ANTRAL is a national association for transportation. 

3,000 distinct taxi drivers, whilst our dataset contains only 
217 distinct taxi drivers), and b) to specific taxi drivers’ 
behaviors (e.g. it was observed a considerable amount of 
trips from the airport to a nearby bus stop, and returning, 
locate at less than 500m, a behavior that affect the overall 
distributions). 

Downtime analysis 
The previous analysis focused on the taxi service, in other 
words, the relation between the pick-up and the 
corresponding drop-off. Also interesting to understand is 
the analysis of what happens in between services (i.e. 
downtime – time spent looking for next pick-up), since it 
can help improve the taxi drivers’ income. 

Figure 10 presents the areas with high (red) and low 
(yellow) average distance traveled when taxis search for 
new pick-ups and the relationship between the previous 
drop-off locations and the following pick-up locations (line 
thickness represents strength).  

 

Figure 10. Spatial distribution according to the average 
distance traveled during downtime and the relationship 

between previous drop-off and next pick-up location (A, City 
downtown; B, Airport; C, Train Station; D, Train St ation; E, 
Ferry dock; F, City center; G, Univ. Campus; H, Commercial 

Area; I, Residential). 

The areas away from the city center (characterized by a 
higher number of residential buildings) show higher 
average distances traveled between services, whereas in 
downtown the distances traveled are relatively smaller.  

By the same token, strong relationships between adjacent 
locations are observed in urban areas while in suburban 
areas strong links are observed between distant locations. 
This appears to us that after a drop-off in suburban area, a 
taxi driver typically heads to locations with higher 
probability of picking up new passengers (e.g. airport, city 
center) even if it means to travel a higher distance to the 
next pick-up location. 

In figure 11 we can see a density grid, where next pick-up 
location takes place in the same location as the previous 
drop-off. Downtown (A), city center (F), airport (B) and 



 

train stations (C and D) are the locations with higher 
probability to pick-up a new customer in the same area after 
the previous drop-off. 

 

Figure 11. Next pick-up location takes place in the same 
location as the previous drop-off. 

From these preliminary results we can estipulate that taxi 
drivers may want to improve their income by targeting the 
above-mentioned locations, or at least move to those 
locations after the latest drop-off, since it can improve the 
probability to pick-up a new customer in a reasonable 
amount of time and without the need to travel great 
distances. 

Figure 12 shows the variation in trips made by and the 
number of taxis in service throughout the day, whereas 
Figure 13 shows the average time spent and distance 
traveled during downtime.  

 

Figure 12. Amount of trips made by (blue) and number of 
taxis in service (red) throughout the day. 

Due to the low amount of taxis in service in the early AM 
hours (12 a.m. to 7 a.m.), the average downtime and 
distance traveled searching for new passengers are 
relatively high. The average downtime remains almost 
constant during 10 a.m. to 10 p.m. There is a sudden drop in 
downtime at 10 p.m. but a rise of distance traveled. The 
lower number of taxis in service as well as potential 

passengers during this late hour presumably causes longer 
time spent searching for pick-up.  

 

Figure 13. Average downtime (blue) and distance traveled 
(red). 

Both distance traveled and downtime appear to follow 
exponential distributions as argue by [14] (figure 14). 

   

Figure 14. Distribution of distance traveled (red) and time 
spent (blue) during downtime.  

   

Figure 15. Variation in service distance (blue) and income 
(red). 

In figure 15, we can see the relationship between the 
distance traveled during downtime, and the resulting service 
distance with corresponding average income. A higher 
distance traveled during downtime does not guarantee a 
more profitable service.  



 

We can conclude that, in order to improve the profit, it is 
preferable for a taxi driver to wait for passengers in 
locations related with main public transportation terminals 
(airport, train stations, ferry dock or main bus stops), and 
not travel great distances to the next pick-up location, 
unless to return to the aforementioned locations. If the drop-
off location coincides with a public transportation terminal 
it is preferable to wait for new passengers in that location. 

PREDICTABILITY ANALYSIS 
One of the main features of taxi services is the ability to 
adapt to the passenger needs, since it is not bounded to pre-
defined path or pick-ups and drop-offs locations. Therefore, 
taxi movement dynamically adapts to the flow and the need 
of the city. The natural question would be: is it possible to 
predict the taxi movements? One can argue that due the 
apparent randomness of taxi that goal can be challenging. 
However, our exploratory study shows the possibility of 
some movement patterns (e.g. temporal and spatial density 
of pick-ups and drop-off, the relation between pick-ups and 
drop-offs). 

In previous work [6] carried out a spatiotemporal analysis 
of trips made by taxis and found that day of the week, time 
of the day, and weather condition are promising features in 
predicting taxi volume. In this work, we aim to explore the 
predictability of taxis given the current drop-off. We have 
observed that area type characterize by POI can potentially 
be used here along with other aforementioned features used 
in the previous work. Here we apply a simple probabilistic 
approach. 

We apply a naïve Bayesian classifier for our study of the 
predictability. The classifier simply applies the Bayes’ 
theorem with independence assumption [15]. The objective 
is to compute the likelihood of each possible pick-up area 
type (Y) given the hour of the day (T), day of the week (D), 
weather condition (W) and area type (I) of the last drop-off. 
The conditional probability can be formulated as follows: 
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where T = {1, 2, …, 24}, D = {Sunday, …, Saturday}, W = 
{Sunny, Cloudy, Rainy}, and I = {Services, Recreation, 
Education, Shopping, Police, Health, Transportation, 
Accommodation}. The prediction is based on the maximum 
a posteriori probability (MAP) decision rule: 
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Based on 10-folds cross validation, we are able to predict 
(for each drop-off) the next pick-up area type at about 54%. 

Previous experiments shows that individual taxi trips are 
relatively random and therefore a challenging problem. 

CONCLUSIONS 
Our work is focused in the analysis of taxi-GPS traces to 
better understand the urban mobility. Using traces collected 
in Lisbon, Portugal we are able to visualize the 
spatiotemporal variation, identifying the main pick-up and 
drop-off locations and busy hours. We also to identify the 
link between pick-up and drop-off locations, observing  
strong links between public transportation terminals, where 
taxi service appears to be a bridge between different public 
transportation services. We analyze the behavior during 
downtime – time spent searching for next pick-ups - where 
taxis tend to avoid making long trips to suburban areas for 
pick-up. 

Our predictability analysis explores the possibility to 
predict the next pick-up area type given the drop-off 
features. With Bayesian approach given time of the day, 
day of the week, weather condition and area type of the 
current drop-off location, 54% of all trips are predictable, 
showing that individual taxi trips are relatively random.  

Being able to accurately predict taxi flow is important and a 
challenging problem, which we will address it further in our 
future work. Other topics for our future studies include the 
commuting pattern between multimodality as suggest by 
the exploratory analysis, and driving strategies to improve 
the income. 
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