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Abstract— During a regular commuter’s day, one may be
faced with several situations where choosing a soft mobility
option (e.g. walking, cycling) offers more advantages than a
regular public transport (e.g. bus, subway). The main issue is
to evaluate when such advantages exist.

In this paper we analyze the Lisbon bus network on face
of the evaluation of when this integration is interesting. We
present its availability and range (in terms of distance and
time) in order to highlight the areas where the commuter may
benefit from a soft mobility option. The final goal is to use
this information to determine which are the best locations for
providing soft mobility means of transportation, as well as to
advise a commuter about the best travelling option. We argue
that this approach is useful for similar bus networks in other
cities.

Index Terms— soft mobility, intelligent transportation sys-
tems, urban computing, Global Positioning System (GPS) traces
analysis, user profile

I. INTRODUCTION

Nowadays, soft mobility is becoming more than a simple

way of life. The continuous growth of private vehicle usage

on urban areas has achieved a unsustainable level and the

public transportation system is nowhere near to suit every-

one’s needs.

The concept of soft mobility (or slow traffic, as it is also

referred[14]) is commonly understood as any non-motorized

transport (human powered mobility) [10]. Nonetheless, on

the context of our work, we are also considering small

electric transports, such as electrical bicycles, as soft mo-

bility transports. These new motorized vehicles provide the

same advantages of their non-motorized counterparts (low

space profile and low direct impact on the environment)

and provide the often necessary motivation for using a soft

mobility transport: it enables the commuter to travel with a

considerable low level of human effort.

In order to make the public transportation more attractive

for the commuters, there are several actions that can be taken.

Amsterdam, which is a common reference in terms of

transportation systems, holds a set of future scenarios for

interesting transport innovations [3]. Nonetheless, although

those innovations look very promising on a mid/long-term

goal, we believe that the current technology and information

can provide other interesting solutions on a short-term basis.
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From the commuters’ point of view, the first thing to

understand is the availability of public transports on a given

location and time. Moreover, on such cases where the public

transport may not suit the commuter’s needs, choosing a soft

mobility mean can in fact represent a valid choice [14].

In the next sections, we will present our approach to bridge

traditional transport systems with soft mobility means of

transportation.

II. DATA DESCRIPTION

In this section we take a closer look to the available data

about the urban space of Lisbon.

A. ”Carris” buses

Our research is based primarily on mobility data related to

Lisbon ”Carris” [1] buses. Figure 1 illustrates the distribution

of bus stops on the metropolitan area in Lisbon.

Fig. 1. Bus stops in Lisbon.

This data gives us an overall view of the availability of

bus stops throughout the urban area.

Data on ”Carris” buses also comprises location tracking

for each operating bus. For this study, we are focusing on

the particular points where the bus arrives to a bus stop, due

to the fact that we want to study not only where but also

when the bus is available.

During its normal course, a device mounted onboard of a

bus records a set of data each time the bus stops. This data



includes identification of the bus (bus number, line), event’s

timestamp, bus stop identification number (id), information

about the trip itself (when it started, direction, trip variant).

Each bus stop is also geo-referenced with its GPS coordi-

nates. By cross-referencing the bus stop id (registered by the

onboard device) with this information, we are able to rebuild

the bus trip’s route using the bus stops as waypoints.

The ticketing information for the ”Carris” buses is also

available, although we are not using it on this study. Each

ticket validation is recorded individually.

B. TMN mobile operator

Another important dataset that we are using on our re-

search is the information about the GSM cells from the TMN

(Telecomunicações Móveis Nacionais) mobile operator1.

Each data record is acquired on an hourly basis and in-

cludes, among other information, the number of call attempts

(on site and handovers), blocked calls, congestion time (time

during which the cell had all its channels busy), successful

call attempts and the number of dropped calls.

We used this data as a clue on the distribution of people

along the city of Lisbon.

C. ASTER Global Digital Elevation Model

The Ministry of Economy, Trade and Industry (METI)

of Japan and the United States National Aeronautics and

Space Administration (NASA) released, back in June 2009,

the Advanced Spaceborne Thermal Emission and Reflec-

tion Radiometer (ASTER) Global Digital Elevation Model

(GDEM) [5]. This elevation model is freely distributed for

research purposes and provides a highly reliable dataset with

a resolution of about 30 meters per pixel. The model’s

elevation accuracy standard deviation is within the [7m,14m[

range.

The purpose for this data is to provide an elevation mea-

surement for calculating the terrain slope. This is particularly

important for the user profiling that we will discuss later in

section V.

III. DETERMINING BUS AVAILABILITY

As seen on section II-A, the data about ”Carris” buses that

we are using comprises the GPS tracking of each operating

vehicle (bus). Based on this information, we are able to

extract several indicators about the availability of buses not

only in the space, but also in time dimension.

A bus line may include more than one bus operating at a

given time.

The data set we used refers to all the bus arrivals at bus

stops on the week between May 26, 2010 and May 31,

2010. This represents a total of 1.701.134 arrivals, distributed

across 64.589 bus trips.

1TMN has a national market share of 43 to 45%, which is even higher
in Lisbon. This provides us a representative information about the actual
usage of GSM mobile devices within the city of Lisbon.

A. Bus arrivals

Figure 2 shows the number of bus arrivals at each bus

stop for all the week. The lighter blue (and larger) circles

represent the bus stops where there is a higher rate of bus

arrivals. As expected, the main streets are the ones with more

frequent buses.

As our purpose was to identify the areas of Lisbon that are

provided with less buses, we did not consider the direction

of each bus.

In order to more clearly identify the bus availability on

the urban area of Lisbon, we modeled its map with a grid

of 500x500m cells. Each cell represents the sum of arrivals

at each bus stop contained on its area, as seen on Figure 2.

The bus availability is represented from yellow to red, where

yellow represents a lower availability, whereas red represents

a higher availability. This gives us an overall view of the

location-based accessibility of the bus network[9].

Fig. 2. Bus arrivals in each bus stop during one week: 500x500m cells.

In Figure 2 we can see several cells with a limited number

of bus stops, but with a great number of bus arrivals. This

means that, although there is the need for a high availability

of buses on these areas (thus anticipating a high number of

commuters), there will be many individuals that will need to

travel by their own means a considerable distance in order

to reach the designated bus stops.

We also analyzed the time between bus arrivals at a bus

stop, in order to calculate the mean waiting time. Figure 3

shows the mean time (in seconds) between arrivals for the

top thirty bus stops with more frequent buses.

This figure also shows the mean of bus arrivals per

bus stop, aggregated per hour, for the complete week. We

can clearly see two peaks on [6h, 9h[ and [16h, 20h[.

These two periods correspond to the rush hours, hence the

reinforcement of the bus availability.

Based on all the previous data analysis, we are able

to determine the areas of Lisbon where the availability of

buses is on its lowest level. Figure 4 represents those areas,

according to Table I, which specifies the lower and upper

value for the bus arrivals on each cell area.



Fig. 3. a) time between arrivals for the top 30 bus stops, b) bus arrivals
per hour.

TABLE I

RANGES REPRESENTED ON FIGURE 4

Arrivals (per week)

color lower value upper value
black 0 1

red 1 300

orange 300 600

yellow 600 900

Fig. 4. Areas of Lisbon with the lowest bus availability.

B. GSM antenna load

We determined the number of attempted connections for

each GSM antenna in order to represent its load. In Figure 5

the red diamonds represents the most loaded antennas, which

overlap the 500x500m cells referred on Figure 2. The blue

circles represent the bus stops with the highest number of

bus visits.

Although we don’t have enough data to irrefutably prove

it, we consider that a higher number of connection attempts

is translated to a higher crowded area.

As we expected, the areas with the highest number of bus

visits match the areas where the GSM antennas register a

higher number of connection attempts.

Fig. 5. Antenna load compared to the bus availability.

This exploratory analysis can assist us, for instance, to

determine the potential locations for bicycle stations. Placing

those bicycle stations within the areas represented on Figure

4 could provide the necessary means for commuters to either

travel to their usual destination, or at least to the nearest bus

stop.

C. Bus lines

During the course of our study, we also took a closer look

to a number of statistics about each bus line. Our first task at

this point was to find the bus lines with the highest number

of trips, as well as the bus lines that feature lower travel

speeds.

There are several events that affect the normal traffic

behavior of a bus (e.g. traffic jams, bus breakdown). By

using the ”real-time” GPS data, we were able to research the

dynamic accessibility[9] of the bus network, as opposed to

the static nature of a typical timetable defined by the operator.

As described earlier on Section II-A, the provided infor-

mation about the bus trips has a record for each time the bus

stops. We executed a series of SQL queries on a Postgres

database engine with the PostGIS extension[6], in order to

rebuild each bus route.

Figure 6 shows the bus lines with the highest number of

trips (red represents the highest number of trips, whereas

yellow represents the lowest).

Figure 7 shows the traces of the slowest bus lines (total trip

mean speed less than 14 Km/h). The bus lines represented

in red are the slowest ones within the selected subset, in

dashed-blue are the medium ones and in dashed-green are the

fastest ones. The 500x500m cells that include those traces

are highlighted on the right of Figure 7.



Fig. 6. Bus lines with the highest number of trips.

Fig. 7. Slowest bus lines and the corresponding 500x500m cells.

The speed is described as the mean trip speed of all the

trips that were recorded during the period we are studying,

for each bus line. This helps us to identify the bus lines

where the mean trip speed may eventually lead a commuter

to choose a soft mobility mean, such as a shared bicycle.

IV. INTRODUCING SOFT MOBILITY IN THE BUS

NETWORK

The next step in our analysis was to determine where a soft

mobility option presents itself as a better option as opposed

to the bus.

In our experimental approach we began by choosing one

of the slowest bus lines. We selected the bus line 742,

which goes from the Bairro Madre Deus/Escola to Pólo

Universitário da Ajuda. This represents a trip of around

14.5km (13km considering the Euclidean distance between

bus stops) and it is the 17th slowest bus line on our calculated

rank.

The mean speed of the trips on this bus line is about

12km/h. This value was determined by averaging the speed

for all the trips of this bus line (limited to the trip direc-

tion mentioned before). The calculation of the mean speed

includes the waiting time in each bus stop.

Using the ASTER digital elevation maps[5], we deter-

mined the elevation for each bus stop included in this bus

line. Figure 8 represents the elevation profile of this bus line

along the entire trip. Table II shows the distribution of the

main slope ranges along the trip’s route.

Fig. 8. Selected bus line’s elevation profile

TABLE II

SLOPE ALONG THE TRIP

slope gradient distance % of distance
downhill (-3 to -2%) 0.31 km 2.36%

downhill (-2 to -1%) 0.50 km 3.82%

downhill (-1 to 0%) 4.40 km 33.75%

flat 0 km 0%

uphill (0 to 1%) 7.30 km 56.00%

uphill (1 to 2%) 0.53 km 4.06%

uphill (2 to 3%) 0 km 0%

According to Zhan and Wan [14], the usual bicycle speed

on an urban context is about 10 to 15 km/h. The mean speed

for the bus line we selected is within this range.

Parkin and Rotheram[8] also present a very interesting

study on the speed and characteristics of cyclists and which

are the main factors that influence those characteristics. Their

model suggest that, on the flat, the mean speed of cyclists

is 21.6km/h. For each additional 1% of uphill gradient, the

mean speed is reduced by 1.44km/h, whereas an additional

1% of downhill (negative) increases speed by 0.86km/h.

Considering this model and the mean of each slope

gradient for the selected bus line, we calculated the mean

speed for each slope gradient, as seen on Table III.

TABLE III

MEAN SPEED PER SLOPE GRADIENT

slope gradient speed
downhill (-3 to -2%) 23.75 km/h

downhill (-2 to -1%) 22.89 km/h

downhill (-1 to -0%) 22.03 km/h

flat 0 km/h

uphill (0 to 1%) 20,88 km/h

uphill (1 to 2%) 19.44 km/h

uphill (2 to 3%) 0 km/h

Next we calculated the weighted mean of the speed of the

cyclist. The percentage of total distance in Table II represent

the contribution of each slope gradient for the overall mean

speed. The final result for this measurement is 21.35 km/h.

According to the model proposed by Parkin and Rotheram,

and considering the mean speed on the selected bus line,

there is clearly an advantage on the soft mobility alternative.

There are, of course, several questions to be addressed when

using, for example, a bicycle (e.g. weather conditions, items



do carry, traffic safety, wind resistance). Nonetheless, from

the strict point of the travelling speed, bicycles provide a

possible alternative to the bus network.

In order to compare these results with real GPS data,

we collected a set of GPS tracks generated by bicycle

commuters. It was not possible to recruit volunteers for

explicitly recording GPS data, so we took in consideration

a few community based sites that rely on the concept of

social networks for sharing this kind of data. We used the

Wikiloc website[2] for this purpose, because it is one of the

few social network sites that retain the original timestamps

of the uploaded GPS tracks.

We selected 15 GPS tracks with 10 to 30 km in length.

In order to obtain accurate elevation measurements on these

GPS tracks, we also applied the ASTER GDEM[5] elevation

model.

We calculated the mean speed for each slope gradient of

all the 15 GPS tracks, considering the actual recorded speed.

Table IV shows these results.

TABLE IV

RESULTS REAL GPS DATA

slope gradient speed distance % of distance
downhill (-3 to -2%) — 0 km 0%

downhill (-2 to -1%) 9.94 km/h 0.03 km 0.10%

downhill (-1 to -0%) 16.73 km/h 14.79 km 49.99%

flat 7.37 km/h 1 km 3.38%

uphill (0 to 1%) 14.95 km/h 13.71 km 46.4%

uphill (1 to 2%) 17.66 km/h 0.05 km 0.17%

uphill (2 to 3%) — 0 km 0%

Next we calculated the weighted mean of the speed, based

on the percentage of total distance in Table II for each slope

gradient. The result was 15.32 km/h. This result is a bit

far from the 21.35 km/h predicted by the model, although

is is within the speed range suggested by Zhan and Wan.

Moreover, the mean speed is still above the mean speed of the

bus, therefore the bicycle option is still a possible alternative.

We should take in consideration the fact that there we

have no knowledge about the behavior and motivation of

the cyclists that anonymously provided the GPS tracks. We

expect that during the evolution of our research we will

be able to use real GPS data acquired specifically for this

purpose. Nonetheless, the available data at the present time

enabled us to demonstrate the proof of concept.

V. FUTURE WORK: MODELING THE COMMUTER’S

MOBILITY

One of the purposes of our study is to identify the

potential for creating a multimodal interface between public

transportations (the bus network, in our study) and soft

mobility transports. Nonetheless, in order to achieve that,

the human variable cannot be discarded.

Our envision incorporates the use of a personal travel

assistant that takes in consideration not only the information

about the available means of transportation in real-time, but

the commuter’s physical strength. This physical strength will

be translated to the effective range of the commuter based

on his soft mobility choice.

A. Energy expenditure

The estimate of energy expenditure has been studied in the

past [7][12]. The common approaches use specific devices,

such as the ActiGraph activity monitor range [4].

Nowadays, smart handheld devices are widespread. These

devices are commonly equipped with accelerometers and

GPS receivers.

Our approach is based on simple handheld devices, such as

a smartphone. Although these devices may provide data that

is less precise than the data generated by activity monitors,

they are less intrusive and do not require the commuter to

carry an additional device. Our goal is not to determine the

exact energy expenditure of a walking or cycling journey, but

to determine the commuter’s behavior during that journey.

B. Determining commuter’s range

By analyzing the mobility data features (speed, rhythm

[11], acceleration, location, among others) against the terrain

topology [5], we will be able to create a user profile.

This user profile will allow us to determine how far can a

commuter go (on foot or by bicycle) at an acceptable effort

level.

Figure 9 shows a prototype application designed for An-

droid smartphones that will capture in real-time the mobility

data from the commuter. Due to the high power consumption

associated with the intensive use of motion and GPS sensors

on handheld devices, this application will take into account

several power-aware techniques that minimize the battery

usage [13].

Fig. 9. Capturing GPS and accelerometer data.

So, considering the following information:

1) the commuter’s location

2) where the commuter wants to go

3) the bus stops and bicycle stations nearby the start and

destination locations

4) the statistical information about the nearby bus stops

that are part of a bus route that includes the destination

area



5) the commuter’s profile

6) the land topology

The application will be able to determine the best choice

for the commuter in terms of means of transportation. If this

implies choosing a soft mobility option, the application will

provide an optimized route as well.

C. Commuter’s dynamics within the city

In order to anticipate the distribution of bicycles on a

bicycle station network, it will be necessary to analyze the

dynamics of the commuters within the city. Determining the

flow of individuals on several periods of the day will help

do establish the needed quantity of bicycles in each station,

and eventually the need to move them from station to station

on key moments of the day.

The ticketing information can be used to determine how

many commuters enter a bus on a particular bus stop.

Unfortunately there is not any information about the number

of commuters that leave a bus. This presents itself as a

challenge for our future work, to infer how many people

leave a bus on a particular bus stop.

VI. CONCLUSIONS

We strongly believe that integrating the information about

the availability of public transportation with the profiling

of commuters can benefit all the users of that public trans-

portation system. Not only it can encourage the use of soft

mobility means, it also can provide the proper information

for distributing bicycle stations.

Our study shows that although Lisbon has a large set of

bus stops, there are several places where the bus availability

is not as regular as desired. It also shows that in some of

the areas with frequent bus arrivals, there is a considerable

amount of streets in a 500m radius that do not have bus

stops. Furthermore, our study highlights the bus lines which

would benefit from a shared bicycle network, based on the

mean speed along those bus lines.

Finally, we demonstrated that a cyclist will be able to

travel along a bus line faster than the bus itself, based on

real data.
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